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de estudio en la Riera y por los ánimos en los d́ıas de cansancio. A mis amigos por la paciencia
que han tenido al aguantarme en los d́ıas de estrés y a Lorena por darme fuerzas y dibujarme
una sonrisa en mi rostro en los momentos más complicados.

1





Contents

1 Introduction 4

1.1 Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Wave propagation in quasi-one-dimensional wires . . . . . . . . . . . . . . 6
1.1.2 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The Anderson localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Scatter of a vertex 10

2.1 Scattering matrix of a circular bend . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Process with consecutive vertexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 System of many impurities 15

3.1 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 System of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Anderson localization 18

4.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 Lyapunov exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Comparison between two systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Dependence with the impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Conclusions 25

3



Chapter 1

Introduction

Nanotechnology can be defined as the study of microstructures of materials using electron mi-
croscopy and the growth and characterization of thin films, or a bottom-up approach in mate-
rials synthesis and fabrication, such as self-assembly or biomineralization to form hierarchical
structures like abalone shell. Even it can mean something startlingly new, such as miniature
submarines in the bloodstream, smart self-replication nanorobots monitoring our body, space
elevators made of nanotubes and the colonization of the space. Since these examples are different
statements that people working in nanotechnology use to define the field, it proves the extensive
spectrum of research [1].

In general, nanotechnology can be understood as a technology of design, fabrication and
application, as well as fundamental understanding of physical properties and phenomena of
nanostructures and nanomaterials. But the study of materials in the nanometer scale has been
traced for centuries, for example the study of biological systems and the engineering of many
materials such as colloidal dispersions, metallic quantum dots, and catalysts have been in the
nanometer regime [1].

The current fever of nanotechnology
is partially due to the shrinking of
devices in the semiconductor industry.
As the Moore’s law says [2], the
technology tends to shrink arriving at
nanometer scale which is the working
scale of the nanoscience. Currently,
the typical dimension involves from
subnanometer to several hundreds of
nanometers.

A nanometer (nm) is one billionth of
a meter, 10−9 m, approximately the
length equivalent to 10 hydrogen or 5
silicon atoms aligned in line. The fig-
ure 1.2 shows an example of the posi-
tion of nanodevices in the scale com-
pared with other known systems.

Figure 1.1: Sketch of Moore’s law in the evolu-
tion.
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These small structures or small-materials have different physical properties because of quan-
tum physics important role.

Figure 1.2: Scale comparison of the nanodevices.

Many technologies have been explored to fabricate nanostructures and nanomaterials [1].
These technical approaches can be grouped in several ways. One of them is to group the
techniques according to the form of products:

• Nanoparticles (zero-dimensional nanostructure) by means of colloidal processing, flame
combustion and phase segregation.

• Nanorods or nanowires (one-dimensional nanostructure) by template-based electroplating,
solution-liquid-solid growth (SLS), and spontaneous anisotropic growth.

• Thin films (two-dimensional nanostructure) by molecular beam epitaxy (MBE) and atomic
layer deposition (ALD).

• Nanostructured bulk materials, for example, photonic badgap crystals by self assembly of
nanosized particles.

1.1 Nanowires

Quantum wire is known as one-dimensional nanostructure formed by many techniques such as
spontaneous growth, template-based synthesis, electrospinning and lithography. The structure
is characterised by a diameter not exceeding a few hundred nanometers (see Figure 1.3).

Figure 1.3: Photography of nanowires
and an enlargement of one of them with

10 nm of scale.

This kind of nanostructure has many applications
in different sectors such as energy, environment or elec-
tronics. There are different utilities as possible filters
compost by nanowires to kill bacteria in water. In addi-
tion, researchers at Nies Bohr Institute have determined
that sunlight can be concentrated in nanowires so it can
be applied in solar cells, transforming more solar energy
in electricity [3]. Evidently, this type of structure can
also be used to fabricate transistors and devices improv-
ing their conductances and the information transmitted.
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1.1.1 Wave propagation in quasi-one-dimensional wires

Considering an ideal quantum wire, the wave function can be separated as shown in the equation
(1.1), formed by a wave plane function in the longitudinal direction (x) where L is a normaliza-
tion length and χn(y), that are quantized states normal to the wire direction called transverse

modes. The energy from the system is expressed with the equation (1.2) where En is the energy
obtained by the transverse mode n [4].

ψnkkk(rrr) = χn(y)
1√
L
eikxx , (1.1)

En(kx) = En +
h̄2k2x
2m∗

. (1.2)

These results can be determined from the split of the Hamiltonian into two parts. One
corresponding to the longitudinal direction (1.3) and another one corresponding to the normal
direction (1.4). The last one contains the potential that determined the transverse modes. In
this research, the potential used is an infinite square well. For this reason the wave function
becomes the equation (1.5) and the energy is (1.6), where W is the width of the wire and kn
the transversal mode.

Hx = − h̄2

2m∗
∂2

∂x2
, (1.3)

Hy = − h̄2

2m∗
∂2

∂y2
+ V (x; y) , (1.4)

Ψn(x, y) = (ane
iknx + bne

−iknx) sin
[(nπ

W

)

y
]

, (1.5)

En(kn) =
h̄2π2

2m∗W 2
n2 +

h̄2k2n
2m∗

. (1.6)

1.1.2 Conductance

In a scattering process the electron can be reflected or transmitted. This effect has an important
influence into the current, that at low temperature is written as the equation (1.7), where gs is
the degeneracy, e the charge from the electron, Tn = |tn|2 is the transmission by a determined
mode n and the voltage VSD appears due to the difference potential between the terminals of
the wire extremes. By the Ohm’s law, the current is proportional to the voltage I = GV , where
G is the conductance [4].

I = gs
|e|2
h
VSD

∑

n

Tn(E) . (1.7)



1.2. THE ANDERSON LOCALIZATION 7

The quantum conductance (1.8) at low temperature is obtained associating the Ohm’s law
with the current (1.7). Particularly, the model is restricted to low energies, in order to use only
one mode. This fact simplifies the scatterer problem because there are no possible couplings
between transversal modes or more of one transmission coefficient per scatter. As a result, the
conductance has the simple form of equation (1.9).

G = gs
e2

h

∑

n

Tn(E) , (1.8)

G = gs
e2

h
T (E) = GoT (E) . (1.9)

In an ideal quantum wire, the conductance is quantized as G = GoN depending on the
number of occupied modes N where the quantum conductance is Go = gse

2/h. It is a curi-
ous phenomenon which implies the existence of an intrinsic resistance into a perfect nanowire.
Nevertheless, if the wire has impurities that are treated as scatterers, the conductance will be
determined by the equation (1.9). In the simile of Ohm’s law, this conductance is inversely
proportional to the length of the wire. But if the impurities are randomly dispersed by the wire,
the linear behaviour can be different for a significant number of scatters. This phenomenon was
studied by Anderson.

1.2 The Anderson localization

Figure 1.4: Philip Warren
Anderson (born December 13,

1923)

Anderson was the first one to suggest the possibility of
electron localization within a semiconductor due to the de-
gree of randomness when the number of impurities was suf-
ficiently large. In this way, the absence of diffusion of
waves stands out in a disordered medium [5]. The Ander-
son’s localization phenomenon appears in the transport of elec-
tromagnetic waves, acoustic waves, quantum waves, or spin
waves.

From the contributions of Anderson, the statistical proper-
ties of wave transport through disordered media has been stud-
ied, such as the conductance behaviour in a nanowire. In this
kind of one-dimensional system there are three different trans-
port regime: Ballistic, Diffusive and Localized. These regimes
differ in their conductance probabilistic distributions P (G) and
there are several studies about the behaviour of this distribution
in each regime and the transition between them [6–8].
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In general, a wire with disordered impurities with a determined length L implies that the
conductance is a random variable characterized by a certain probability distribution PL,γ(G)
because of the infinite ways that the impurities can be distributed. The probability distribution
depends on the length L and the parameter γ, known as Lyapunov exponent, that has the rela-
tion with the conductance and wire length shown in the equation (1.10), where the value of N
is the number of occupied modes which will be N = 1 for the rest of the work. Consequently,
the distribution PL,γ(G) changes strongly with L [9].

The localization length is obtained from the inverse of the Lyapunov exponent (ℓ = γ−1).
With this parameter it is possible to distinguish the localized and metallic (ballistic) regimes
which implies different limits in the equation (1.11).

γ =
1

L
log

(

1 +
Go

G
− 1

N

)

, (1.10)

G =
Go

eγL
. (1.11)

• Localized regime,
This regime appears when L ≫ ℓ and γ is normally distributed. In this case the conduc-
tance from the equation (1.11) with one occupied mode is given by the non-Ohmic relation

G = Goe
−γL . (1.12)

• Metallic regime,
The metallic regime emerges when L ≪ ℓ, then the conductance is normally distributed.
The behaviour conductance is the same in the semiclassical description, inversely propor-
tional to the length.

G =
Go

βL+ 1
. (1.13)

The diffusive regime is the transition between the localized and metallic regimes and in this
situation neither the conductance nor the Lyapunov exponent have a Gaussian distribution.



1.3. MOTIVATION 9

1.3 Motivation

This study is focused on the transmission properties in a wire composed by several ideal
nanowires linked by vertexes randomly distributed. Therefore, the conductance distribution,
the Lyapunov’s exponent and the resistance will be determined in three regions (metallic, diffu-
sive and localized) verifying the Anderson localization theory. The randomness of the system is
in the lengths of the linear segments and in the vertices, particularly in the angles.

If the variation of the random parameters are very small, for a several number of vertexes,
the system can be seen as an almost ”perfect nanowire”, as it is observed in Figure 1.5.

(a) Sketch of the complete system with several number
of disordered impurities.

(b) Sketch of a system a few disordered impurities.

Figure 1.5: Simulation of the system that seems a perfect wire (a) as a result of the huge
length compared with the transversal variation that can be observe in the simulation (b).

This one is an enlargement of the first one.

The vertex in a quantum wire can have a bend form made by lithographic techniques, that
has been a subject of interest [10–13]. To describe a bend we need two dimensions, but in this
work it has been used an analytical approximation to obtain one-dimensional problem trans-
forming the bend into a square well potential.

Each vertex is treated as a scatterer in a random position linked by ideal wires with random
length. In order to determine the conductance it is necessary to know the transmission through
the system calculated by scattering theory.



Chapter 2

Scatter of a vertex

Understanding the vertex is the aim of this chapter. Hence, the scattering matrix of the vertex
and the effect of consecutive vertexes will be determined. This impurity is treated as a quantum
wire with a circular bend, so the general problem has two dimensions. The scattering matrix
allows to consider the circular bend as a scatter point, that is, a vertex. This subject was studied
by Sols and Macucci [11] obtaining equations with numerical solutions. However, this work is
focused on the studies of Sprung, Martorell and Wu [12] and Jensen and Koppe [14] that using
some approximations achieve an equation which can be resolved analytically.

2.1 Scattering matrix of a circular bend

The problem can be separated in three parts as shown in Figure 2.1. Two of them (I and III)
are treated as ideal wires using the theory mentioned above with the equations (1.5) and (1.6).
Specifically, the equation used is (2.1) where R = ro +W is the over radius. For a given energy
it is possible to determine the transversal mode with the equation (2.2) where the system energy
is into κ = 2m∗E/h̄2.

ΨI,III(x, r) = (ae±ıknx + be∓ıknx) sin
[(nπ

W

)

(r −R)
]

, (2.1)

kn = κ−
(nπ

W

)2
. (2.2)

For the region II it is necessary to use the Schrödinger equation in polar coordinates (r, θ)
(2.3) which is transformed in (2.5) using the Jensen and Koppe ansatz (2.4) [14].

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2
∂2ψ

∂θ2
+ κ2ψ = 0 , (2.3)

ψ(r, θ) =
1√
r
χ(r, θ) , (2.4)

∂2χ

∂r2
+

1

4r2
χ+

1

r2
∂2χ

∂θ2
+ κ2χ = 0 , (2.5)

10
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Figure 2.1: Sketch of a quantum wire with circular bend. It is organized in three regions
separated by the outlines Ω1 and Ω2, where I and III are ideal nanowires and the region III

is the circular bend with an angle 2θ and inner radius ro.

There are crucial approximations used by Sprung, Martorell and Wu [12] to resolve the equa-

tion (2.5). The first one and very restrictive is to replace r2 by an average value R
2
(2.6).

1

R
2 ≡

1

W

∫ R+W

R

dr =
1

R(R+W )
. (2.6)

With this approximation equation (2.5) becomes (2.9), where x = Rθ. The new form has a
separable solution (2.8) formed by Φn(x), the longitudinal motion through the bend.

∂2χ

∂r2
+
∂2χ

∂x2
+

(

1

4R
2 + κ2

)

χ = 0 , (2.7)

ψn(r, θ) =
1√
r
Φn(x) sin

[(nπ

W

)

(r −R)
]

. (2.8)

The second approximation that is taken into account is to consider the value ”1/
√
r” as a

constant. In this way the longitudinal solution is used to solve the equation (2.9).

∂2Φn

∂x2
+

(

p2n +
1

4R
2

)

Φn = 0 . (2.9)
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These approximations replace the motion in the circular bend by the motion in a straight
section with a finite square well potential of depth V = (h̄2/2m∗)(1/2R)2 into the limits
x = ±RΘ = ±α. The function (2.10) shows the analytical wave function in the system of
a wire with circular bend region.

Ψn(x, r) =























ψI,n = (an,le
ıpnx + bn,le

−ıpnx) sin
[(

nπ
W

)

(r − ro)
]

, if x < −α

ψII,n = 1√
ro
(cne

ıqnx + dne
−ıqnx) sin

[(

nπ
W

)

(r − ro)
]

, if − α < x < α

ψIII,n = (bn,re
ıpnx + an,re

−ıpnx) sin
[(

nπ
W

)

(r − ro)
]

. if x > α
(2.10)

Where the mode wave number used in the circular region (qn) has the relation q
2
n = p2n+1/4R

2

by the expression (2.9). In this way, the two-dimensional problem has been transformed into
one-dimensional, as shown in Figure 2.2.

Figure 2.2: Circular bend sketch on the left that is transformed in the attractive potential

with the potential V0 = h̄2/(4m∗R
2

)

The global wave function has to be continuous as well as its first derivative and therefore
these conditions have to be satisfied at the interface between different regions. For the first
interface corresponding to x = −α the conditions (2.11) are applied and for the second interface
the conditions (2.12) with x = α are used.

ψI |x=−α = ψII |x=−α and
∂ψI

∂x

∣

∣

∣

∣

x=−α
=
∂ψII

∂x

∣

∣

∣

∣

x=−α
, (2.11)

ψII |x=α = ψIII |x=α and
∂ψII

∂x

∣

∣

∣

∣

x=α

=
∂ψIII

∂x

∣

∣

∣

∣

x=α

. (2.12)
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These conditions lead to the scattering matrix of the system. As it has been commented,
this project is realized in the limit at low energies and a small enough width of the nanowire to
consider only the first mode. For this reason, the scattering matrix will have four components
with the following structure (2.13), that connects the output and input coefficients (bl, br, al, ar,
respectively) of the longitudinal function.

(

bl
br

)

=

(

r t
t′ r′

)(

al
ar

)

. (2.13)

The eigenenergy for the first transversal mode is ε1 = h̄2π2/(2m∗W 2). Knowing the energies
and the potential it is possible to write the wave number p and q as (2.14) and (2.15). The
scattering coefficients (2.16-2.17) depend on the energy of the system (E) and the angle and
average radius of the circular bend (θ,R), that are concealed into the modes p, q and the value
of α. It is important to emphasize the fact that the transmission and reflection coefficients are
the same for left and right incidences, t = t′, r = r′, due to the symmetry of the bend.

p =

√

2m∗

h̄2
(E − ε1) , (2.14)

q =

√

2m∗

h̄2
(E − ε1 − V0) , (2.15)

t =
4pq

(p+ q)2e2ı(p−q)α − (p− q)2e2ı(p+q)α
, (2.16)

r =
2ı(p− q)(p+ q) sin(2qα)

(p+ q)2e2ı(p−q)α − (p− q)2e2ı(p+q)α
. (2.17)

Where α was previously defined as α = R̄θ.
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2.2 Process with consecutive vertexes

Considering the vertex as an impurity with the scattering matrix determined in the previous
section, it gives a relation between input and output coefficients knowing the transmission and
reflection caused by the scatterer. This section treats the relation between the coefficients of the
longitudinal function when there are three consecutive vertexes (see Figure 2.3).

Figure 2.3: Sketch of three consecutive vertexes with input and output coefficients in each
quantum wire.

The coefficient labelling is structured with a superindex indicating the number of the vertex
and the subindex referring to the side of the vertex. Wave function in quantum wire can be writ-
ten depending on the vertex used (2.18). This fact implies the relation (2.19) and (2.20). The
amplitudes differ by a phase that appears due to the assumption of two different reference points.

Φ(i→i+1) = a(i)r e−ıp(x−xi) + b(i)r eıp(x−xi) = a
(i+1)
l eıp(x−xi+1) + b

(i+1)
l e−ıp(x−xi+1) , (2.18)

b
(i)
l = a(i−1)r e−ıp(xi−xi−1) , (2.19)

b(i)r = a
(i+1)
l e−ıp(xi+1−xi) . (2.20)

To determine the output and input coefficients in a chain formed by vertices the equations
(2.13, 2.19 and 2.20) are used for each vertex giving a system with 4N unknown quantities and
4N equations, where N is the number of vertices.



Chapter 3

System of many impurities

The Anderson localization phenomenon appears when the system has a large size with several
impurities randomly distributed. The aim of this chapter is to describe the physical problem
through a system of equations which determines the scattering amplitudes useful to know quanti-
ties such as the conductance, the resistance and Lyapunov exponent and therefore the disordered
system behaviour will be known. On top of that, random variables are defined and the relation
between them and the vertex is explained.

In addition, the generation of random number is created by a Fortran subroutine which is
the programming code used to compute the physical problem.

3.1 Random variables

Figure 3.1: Sketch of the system built by random
vertices and ideal wires of random length.

The system is made of two components
(see Figure 3.1). The first one, ideal
quantum wire of random length which
has the expression (3.1), where l0 is the
standard length adding a small variation
l′. In particular, this added length
is always the 10% of l0. The sec-
ond one, the vertex with a random an-
gle regarding the horizontal axis (3.2),
where θ0 is the absolute value of the
maximum deviation angle. The random-
ness in this variables appears in the ran-
dom number ζ that spans from 0 until
1. Global length of the system is con-
nected with the number of vertices Nv

and the constant l0 by the relation L ≈
Nvl0.

l = l0 + ζl′ , (3.1)

θ = θ0(1− 2ζ) . (3.2)

15
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As it is observed in Figure 3.1, the vertex i has a random position x(i) which depends on
the angle θ (3.2) and length l (3.1) (random values for each vertex). The position is determined
by the equation (3.3) considering the first position x(1) = 0. In order to plot the sketch in a
two dimensional graphic with euclidean coordinates, as the Figure 1.5, the cartessian position
of a vertex i is described by equations (3.4) and (3.5).

x(i) = x(i− 1) + l , (3.3)

xi = [x(i)− x(i− 1)] cos θ(i− 1) , (3.4)

yi = [x(i)− x(i− 1)] sin θ(i− 1) . (3.5)

Scattering matrix for a vertex uses the smallest angle between its sides (ω) (see Figure 3.1),
whereas the angle used to build the system is θ. Hence, the relation between both angles for the
first vertex is determined by the equation (3.6) and the rest of them follow the equation (3.7).

ω(1) = π − θ(1) , (3.6)

ω(i) = θ(i− 1) + π − θ(i) . (3.7)

3.2 System of equations

The physical structure can be split in three regions. One of them is characterized by the fact
that each vertex is surrounded by two of them. If the system has N vertexes, this region
is formed by N − 2 of them. Each scatterer defines one system of equations (3.8) formed by
equations (2.13, 2.19, 2.20) that depends on the random variables calculated and the energy used.

b
(i)
l − ra(i)l − ta(i)r = 0

b
(i)
r − ta(i)l − ra(i)r = 0

b
(i)
l − a(i−1)r e−ıp(xi−xi−1) = 0

b
(i)
r − a(i+1)

l e−ıp(xi+1−xi) = 0















































. (3.8)
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The rest of regions are the first and the last vertex. These cases have some restriction be-
cause of initial conditions of the system which are the values of the amplitude input coefficient

for the first vertex, a
(1)
l = 1, and for the last vertex the right input coefficient a

(N)
r = 0. This

conditions say that plane waves only come from the right. In addition, taking into account that
first and last impurity has only one neighbor vertex there is one equation less.

As a result, the system of the equations (3.9) belongs to the vertex i = 1 and the equation
(2.19) is eliminated. The system (3.10) belongs to the vertex i = N and does not contain the
equation (2.20).

b
(1)
l − ra(1)l − ta(1)r = 0

b
(1)
r − ta(1)l − ra(1)r = 0

b
(1)
r − a(2)l e−ıp(x2−x1) = 0



























, (3.9)

b
(N)
l − ra(N)

l − ta(N)
r = 0

b
(N)
r − ta(N)

l − ra(N)
r = 0

b
(N)
l − a(N−1)r e−ıp(xN−xN−1) = 0



























. (3.10)

The global structure of N impurities is formed by the combination of the system correspond-
ing to each vertex. Consequently, the general system to resolve is not homogeneous and contains
4N − 2 equations and 4N − 2 unknown quantities (3.11).
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Chapter 4

Anderson localization

In this section, Anderson localization properties are studied for the analyzed system. The aim
is to know the features of the nanowire such as the conductance (G), resistance (ρ) and the
Lyapunove exponent (γ). It is a statistical problem, then it is necessary a large enough number
of iterations to determine the average values of the wire characteristic due to the randomness of
its impurities.

The system is defined by three important parameters such as the average length (lo) of the
equation (3.1), the angle deviation (θo) shown in the equation (3.2) explained in the section be-
low and the energy (E) higher than the energy necessary to activate the first transversal mode,
ε1 = h̄2π2/(2md2). In this work, the radius of the circular bend is a constant value, but it could
be considered another random parameter. This fact would imply the variation of the depth of
the square well potential making stronger the vertex scatter.

Conductance written in the Landauer equation (1.9) depends on the transmission coefficient
(4.1) and therefore the resistivity is its inverse, Eq. (4.3), where ρo is the quantum resistivity.
Another important parameter for this study is the Lyapunov exponent (1.10) that provides the
localization length (ℓ) whose value classifies the structure, as it has been explained above, in
three regions: metallic, diffusive and localized.

T (E) =
|b(N)
r |2

|a(1)l |2
= |b(N)

r |2 , (4.1)

G = Go|b(N)
r |2 , (4.2)

ρ =
1

G
= ρo

1

|b(N)
r |2

. (4.3)

The length unity is scaled to obtain general results. For this reason, the width of the nanowire
d is used as unity of the length. For instance, if the localization length is ℓ = 120d, with one width
d = 1nm or d = 2nm the corresponding result would be ℓ = 120nm or ℓ = 120× 2nm = 240nm.
The unit of energy is h̄2/(2m∗d2).

18
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4.1 Main results

In a particular case, we checked the behaviour of the nanowire properties in the three regions
explained bellow. The next results correspond to the system with l0 = 20d, E = 4.94, θ0 = 1.
The use of this specific angle increases the square well length, increasing the scattering in the
vertex. This effect reduces the computer power load.

4.1.1 Lyapunov exponent

The classification of the system can be known with the Lyapunov exponent. This quantity is
useful because its inverse is the localization length, that is compared with the global length
of the wire as it was commented in section 1.2. In particular, its value is determined in the
localized region where γ has a normal distribution.

Histograms in Figure 4.1 show the parameter behaviour for the different regions. The im-
portant case is the last one, corresponding to the localized domain. The number of vertexes
used is Nv = 200. Remarkably, for a higher number Nv the expected value is the same. Then,
the localization length is independent of the number of impurities.

Figure 4.1: Histograms of the Lyapunov exponent in the three type of region: metallic
(a), diffusive (b) and localized (c). The parameters used are l0 = 20d, θ0 = 1, E = 4.94 and

Nv = 200. The dashed red line in (c) shows the gaussian distribution.
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For the last case of Figure 4.1, the expected value is 〈γ〉 = 2.2725 · 10−3d−1 providing a
localization length ℓ = 440d. Then if the global structure length L is greater than ℓ the regime
is localized and it is metallic in the opposite case, whereas if L is similar to ℓ the structure is
found in the diffusive regime.

Knowing the average length between impurities is trivial to determine the number of vertices
corresponding to the localization length (Nℓ) using the equation (4.4). For instance, in this case
it obtains Nℓ = 22. Then, there is a metallic regime for N << Nℓ and a localized regime for
N >> Nℓ,

Nℓ =
ℓ

lo
. (4.4)

4.1.2 Conductance

The conductance is the nanowire property that determines the ease of passage of electrons. In
other words, the current along the quantum wire. As the same word says, the remarkable fea-
ture of the metallic region is a high conductance while in the localized area it vanishes. This
behaviour is seen in the Figure 4.2.

Figure 4.2: Histograms of the conductance in the three regions: metallic (a), diffusive (b)
and localized (c). The same parameters of Figure 4.1 have been used. The dashed line for
the first panel is a reference to the normal distribution focus on the maximum conductance

being limited for the case of only one mode.
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For a nanowire with several channels, i.e., several numbers of transversal modes, the trans-
mission can be greater than one, and therefore as it has been explained above there would be
a normal distribution of the expected value. In the limit of only one mode the conductance
behaviour is the same, although the maximum transmission can only be T = 1 (see Figure
4.2.a). For this reason, the right portion of the normal distribution does not appear. For this
instance, the expected value of the conductance is < G >= 0.8157G0.

Histograms 4.2.b and 4.2.c show the conductance distribution in the diffusive and localized
regimes respectively. In the first one, the distribution characterized by the metallic region is
broken and transmission value decreases. In the last one, the conductance tends to vanish, ob-
taining the expected value < G >= 1.3849 · 10−2G0, so the electron transmission does not exist
in accordance to the Anderson localization.

4.1.3 Resistance

Conspicuously, the resistance as the equation (4.3) indicates, is the inverse of the conductance.
Its behaviour is similar in the three different regions although it has a remarkable difference in
the scale (see Figure 4.3).

Figure 4.3: Histograms of the resistance in the three regions: metallic (a), diffusive (b)
and localized (c). Parameters used are same as Figure 4.1. For the last panel, the resistance

value is truncated.
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The main problem to compute the resistance is its limit. For the case 4.3.a and 4.3.b the
resistance has small values with a stable behaviour. In the last panel, the resistance has higher
values and the distribution does not vanish because of the resistance increase exponentially in
the localized regime.

The physics of figures 4.2 and 4.3 concur between them. For instance, both panels (c) de-
termine the distribution in the localized region, where the current vanishes, it implies a high
resistance and a low conductance.

4.2 Comparison between two systems

Figure 4.4 compares the wire properties between an additional system and the preceding case.
This new system is characterized by an average length l0 = 50d and the rest of the parameters
are same as the system in section 4.1. In this section, the behaviour of the conductance and
the Lyapunov is compared in the metallic region (left-pair panels) and in the localized regime
(right-pair panels), respectively. In the diffusive regime (not shown) the behaviour of these
properties lacks a characteristic pattern.

Figure 4.4: Histograms (a) and (b) show the conductance and Lyapunov exponent, respec-
tively, for a system with and average length of the wire l0 = 20d. In the case of a system

with l0 = 50d these histograms are shown in panels (c) and (d).
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The conductance always has the same pattern in the metallic area for different systems
provided only one transversal mode is active. Although the Lyapunov exponent has the same
behaviour indicating the localized regime, each one is focussed on different value. An smaller
Lyapunov exponent implies a higher localization length (see table 4.1). Therefore, the Anderson
localization is determined by the parameters of the system and in the most general case the
localization length depends on l0, θ0 and E. In this particular case, it was checked the depen-
dency with the parameter l0. In addition, in the limit of an infinite length, the quantum wire
regulated by this system will always be in the localized regime.

Using the equation (4.4), it is possible to determine the number of vertexes Nℓ for each
system. Although, in the system with l0 = 50d the localized length is higher than in the system
with l0 = 20d, interestingly, the number Nℓ is almost unchanged. It shows a slight opposite
tendency. (table 4.1).

Table 4.1: Results for different systems depends on the average length lo with the energy
E = 4.94 and deviation angle θ0 = 1 rad. Quantities determined are the conductance (G),

the Lyapunov exponent (γ), the localized length (ℓ) and its number of vertex (Nℓ).

lo (d) 〈G(Go)〉
〈

γ(d−1)
〉

〈ℓ(d)〉 Nℓ

20 0.8157 2.2725 · 10−3 440.04 22

50 0.7924 1.0525 · 10−3 950.12 19

4.3 Dependence with the impurities

The conductance changes with the global length of the system, as it is proportional to the num-
ber of vertices it is possible to know how this property depends on it. The table 4.2 shows results
of conductance and Lyapunov exponent for a range of vertices. For high number Nv, it can be
seen a constant value of γ indicating its size independence previously explained.

Table 4.2: Results for a system with parameters: l0 = 20d, θ0 = 1 rad and E = 4.94. The
quantities shown are the conductance (G) and the Lyapunov exponent (γ) from a specific

number of vertices (Nv).

Nv 〈G(Go)〉
〈

γ(d−1)
〉

5 0.8157 1.44 · 10−3
10 0.6563 1.71 · 10−3
15 0.5670 1.74 · 10−3
20 0.4728 1.80 · 10−3
25 0.4032 1.95 · 10−3
50 0.1929 2.18 · 10−3
60 0.1557 2.13 · 10−3
90 0.0685 2.28 · 10−3
150 0.0210 2.27 · 10−3
200 0.0138 2.27 · 10−3
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In accordance with the Anderson localization theory, the conductance shows a lineal and an
exponential trend in the metallic and localized regimes, respectively. This phenomenon can be
checked in the figure 4.5 that shows the conductance dependence with the number of vertexes.
The better portion is identified as the exponential where the conductance tends to vanish. The
length belonging to the metallic regime is too small for the studied system.

Figure 4.5: Conductance dependence with the number of vertices from the values of the
table 4.2.



Conclusions

This research have been focused on the Anderson localization phenomenon, studying the con-
ductance behaviour and the classification of the system in three regimes (metallic, diffusive and
localized) depending on the localization length determined from the Lyapunov exponent.

The system studied is a quantum wire made of individual 1D nanowires with a random length
linked between them by vertexes with a random angle. Each vertex is treated as a scatterer
studied from the scattering theory of circular 2D bend nanowire. The scattering matrix of the
vertex is characterized by its simple analytical approximations transforming the problem of a
2D circular bend in a 1D square well potential.

Results of the system determined from the randomness of some parameters agree with the
theory explained from the studies of the Anderson localizations and similar statistical studies.
For instance, the normal distribution of the conductance in the metallic regime and the Gaussian
distribution of the Lyapunov exponent in the localized regime have been tested. In addition,
these quantities have been studied for different systems understanding the dependence of the
localization length with the system parameters.

This work is the beginning for the study of a nanowire made of quantum wires of random
length and linked by a vertex in a random position, where this vertex is treated as a scatterer.

It would be interesting to determine how the localization length varies in a given system
when energies span between the first and second transversal mode energies. Some preliminary
calculations indicate a non linear dependence.

Evidently, this study is restricted because of the use of approximations in the scattering
matrix of a vertex and the limit of only one mode. For a full research the model of coupled
channels and spin-orbit interactions should be added.

25



Bibliography

[1] Guozhong Cao, Nanostructures & Nanomaterials Synthesis, Properties & Applications. Im-
perial College Press, 2004.

[2] G.E. Moore, ”Cramming more components onto integrated circuits”, Electronics, vol. 38,
no 8, 1965.

[3] E. Boysen, [online], Nanowires: Uses and Applications of Nanowires,
http://www.understandingnano.com/nanowires-applications.html

[4] Thomas Ihn, Semiconductor Nanostructures quantum states and electronic transport. Ox-
ford University Press, 2010.

[5] P.W. Anderson, ”Absence of diffusion in certain random lattices”, Physical Review, vol.
109, no 5, pp. 1492-1505, 1958.
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