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This paper presents a method that generates a hierarchical user mobility model from the analysis of the
data available from Wi-Fi connections. The data obtained from the Wi-Fi infrastructure is defined in
terms of the coverage areas of the access points that the users move through. These access points are
recursively grouped into different levels of granularity based on their geospatial features. The track of
a user is defined as a sequence of Wi-Fi access points, which is enough to simulate user mobility in,
for example, fog scenarios. The hierarchical definition of the region under study is proposed to reduce
the complexity of the model in high-scale scenarios and to increase the adaptability between scenarios
with different geospatial features. The model creation is based on a user profiling method that uses a
clustering algorithm and each user type is defined with a transition matrix between coverage areas
and a time length vector for the areas. The method is applied to the case of the campus of the
University of the Balearic Islands. From the analysis of the mean square error of the results, we deter-
mined that the proposed method obtains good results for the transition matrices, but that the time vector
definition should be improved. The results also show lower complexity in the case of the hierarchical
model, with one area for each building and three levels, in regard to a non-hierarchical model, with only
one area and one level for the whole campus.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The number of research studies in the field of fog computing has
increased significantly during the last years. In most of the cases,
the experimental phase and the testing of the new research pro-
posals are performed in simulation environments, mainly because
of the difficulties to access real infrastructures with real users. Sim-
ulated results are only reliable if the simulation uses a model based
on a real scenario. Thus, simulations typically include synthetic
traces created from a model defined from real data (Eeckhout
et al., 2000). But a quick review of the up-to-date literature in
the field of fog computing (Ogundoyin and Kamil, 2021; Brogi
et al., 2020) shows that most of the experiments are performed
with random non-realistic models, because of the difficulties to
access real data from these environments to create the models.

Moreover, fog environments are strongly influenced by the
mobility of the users in the system, contrary to other traditional
distributed architectures. Consequently, user mobility models,
based on real-data, are also necessary to obtain reliable results in
the simulated experiments. User mobility influences fog architec-
ture concerning the access points (APs) to which the users are con-
nected to. In other words, the connection of a user to a given AP
determines, for example, the origin of the requests, the number
of requests sent from each AP, the network route the requests
and responses are transmitted along, the network load, etc. Thus,
in a simulation, the fog users’ mobility model determines the APs
where the users are connected to. This model is not influenced
by the underlying network technology, and these connections
could be established with, for example, a Wi-Fi AP, a 5G radio
access network, etc. without altering the mobility patterns of the
users.

The importance of user information for technological compa-
nies compromises its publication in open data catalogues, and user
mobility is one such example. There are many studies in the liter-
ature that require of user mobility and that illustrate the impor-
tance of having user mobility models (Toch et al., 2019). There
are examples of the key aspect of this user mobility modeling in
technological research areas –such as mobile networks (Zonoozi
and Dassanayake, 1997; Zhang and Dai, 2019), location-based
applications (Noulas et al., 2012), intelligent transport systems

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2022.03.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2022.03.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:f.talavera@uib.es
mailto:isaac.lera@uib.es
mailto:carlos.guerrero@uib.es
https://doi.org/10.1016/j.jksuci.2022.03.014
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com


F. Talavera, I. Lera and C. Guerrero Journal of King Saud University – Computer and Information Sciences 34 (2022) 2471–2487
(Quessada et al., 2020), cloud performance (Secci et al., 2016), or
fog infrastructures (Bittencourt et al., 2017)– and in social areas
–such as crowds management (Huang et al., 2018), travel patterns
discovering (Hoogendoorn and Bovy, 2005), natural areas manage-
ment (Meijles et al., 2014), or analysis of sport activities (Lera et al.,
2017)–.

Modeling methodologies to characterize user mobility still have
room for new proposals. One example is the case of our domain
problem, in which the mobility of the user is modeled hierarchi-
cally and created from a small set of mobility data, only requiring
the data related to the APs in which the users are connected to.

In this work, we present a method to create a hierarchical user
mobility model that recursively defines geospatial levels by group-
ing the neighboring APs into regions and zones of different granu-
larity. The input data of the method is a data set of user
connections to the APs of a Wi-Fi infrastructure. We focus our
study on the use of Wi-Fi technology because this type of data is
more accessible than 5G data, which requires the collaboration of
public communication companies. But our method could be easily
applied in other types of connection networks.

Note that we do not propose a new system or tool for user loca-
tion or for gathering this data. We use such a type of systems to
gather user location data, which are subsequently used by our pro-
posed method for the creation of the user mobility models. In our
particular case study, we decided to use Aruba Location Engine
(ALE) because it was already deployed in our infrastructure, but
any other system, such as Cisco Prime Infrastructure would be also
suitable to gather the data.

The paper is organized as follows: in the remainder of this
introductory section, the motivations and contributions of the pro-
posed work are highlighted; Section 2 reviews related research
works; Section 3 introduces the context of user mobility modeling;
Section 4 includes the details of the proposed method for user
mobility modeling; Section 5 presents the application of the pro-
posed method in the study of the user mobility in the campus of
the UIB, and the results are analyzed; and finally, Section 6 sum-
marizes the conclusions and establishes future research lines.

1.1. Motivation and contributions

The evaluation of new fog proposals is usually performed in a
simulator in their early experimental phases, because of the large
scale of these infrastructures. Simulations need real data to obtain
reliable results. But the number of open data sets related to user
mobility in IT infrastructures is very limited (Luca et al., 2021),
and most of them do not include the relationship with the comput-
ing infrastructures (Mimouna et al., 2020).

Obtaining data from real scenarios is complex and many
researchers do not have access to suitable data sets, nor to infras-
tructures where they can collect the data.

From the analysis of the experiments of most of the research
works (Ogundoyin and Kamil, 2021; Brogi et al., 2020), it is
observed that there is an important challenge related to the use
of real models in simulations. When researchers of fog infrastruc-
tures need to test and validate their proposals, they need to face
two important challenges, depending on the resources they have.

The first case is when the researchers have access to the
deployed infrastructures they want to simulate, and they can col-
lect users’ mobility data and their interactions with the computing
infrastructure. In those cases, the main challenge is that the com-
putational complexity to create the user mobility model is very
high.

The second case is when the researchers can only access open
data sets or models, whose availability is very limited, and the
existing models need to be adapted to the infrastructure and the
geospatial features of their study case.
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Consequently, two research questions arise from these research
challenges:

� RQ1: Is it possible to model user mobility in such a way that
allows us to extrapolate/adapt a model between case studies
with different geospatial features?

� RQ2: Is it possible to reduce the complexity of the mobility cre-
ation for large scale scenarios, such as fog infrastructures?

We have analysed several up-to-date reviews and surveys in
the field of user mobility modeling, as we comment in Section 2,
and to the best of our knowledge, current user modeling proposals
lack both challenges, the computational complexity of the mobility
model creation for large scale domains, and the adaptation of the
mobility models between scenarios with different geospatial
features.

Our proposal addresses both challenges by combining
approaches from the fields of user characterization and geospatial
studies. We combine the use of transition matrices to model user
mobility behavior (Barbosa-Filho et al., 2018) and the definition
of a hierarchical geospatial organization (Xie et al., 2014; Xu
et al., 2015) of the networking resources in which the users are
connected to. We concrete our proposal in the following research
hypothesis: User mobility can be modeled by defining hierarchical
levels of the geospatial zones of the region under study, and mod-
eling mobility at each of these levels with transition matrices
between the zones. This hierarchical approach reduces complexity
and increases the extrapolation of the resulting model.

The great volume of data regarding user connections requires a
data analysis solution that reduces the problem size without com-
promising results. With the use of a geospatial hierarchical decom-
position of the region under study into levels and zones, the
modeling process can be split into smaller sets, reducing the com-
putational complexity.

Additionally, the hierarchical definition of the mobility model
allows us to easily adapt it to scenarios with different geospatial
features by scaling it up/down. For example, zones with given fea-
tures can be duplicated or removed to adapt the mobility model to
other case studies.

We particularize our proposal in the case of Wi-Fi infrastruc-
tures and apply it in a real study case. Thus, the contributions of
this paper are:

� A method for hierarchical user mobility modeling. The model is
defined with pairs of a stochastic transition matrix and a time
vector, that respectively model the changes in the coverage
areas of the APs (i.e., the AP that the user is connected to) and
the time that the user stays in that coverage area. The input
of the model is the connection data obtained from Wi-Fi APs.
The proposed method can be easily extended to other connec-
tion technologies, for Example 5G networks.

� The application of the proposed method to a real scenario (the
campus of the University of the Balearic Islands, UIB, a medium
size university) to validate and test the proposed method. The
obtained model has been also published in an open repository
to allow other researchers to use/adapt/extend the model to
their specific necessities.

We have highlighted the use of mobility data in the evaluation
of fog infrastructures and we have focused on the applicability of
our method to mobility generation in this type of environment.
But our mobility models can be used in any type of evaluation/ex-
periment that requires simulating the user mobility in a wireless
environment. The only constraint is that the user mobility is mod-
eled and expressed in terms of the APs where the users are con-
nected to, i.e., the coverage area of the network access devices.
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2. Related work

The study of human mobility data plays a nuclear function in
understanding scientific areas related, as in our case, the evalua-
tion of fog infrastructures. But it is not less important its role in
fields such as culture, spread of epidemics, environmental impact,
tourism industry. There is an extended diversity of studies on the
analysis of human mobility in so many scientific areas, reflecting
its importance. Many surveys collect and classify these researches,
generally based on the data set type and the purpose of the study
(Barbosa-Filho et al., 2018; Solmaz and Turgut, 2019; Thornton
et al., 2018; Toch et al., 2019; Wang et al., 2019; Luca et al.,
2021; Pappalardo et al., 2019; Kulkarni et al., 2019; King et al.,
2021; Hess et al., 2016).

Becker et al. (2013) demonstrated the value of cellular network
data for human mobility modeling. But their analysis of the mobil-
ity was focused on geographic aggregation of the results, instead of
a single user-aware modeling. Consequently, traces of user move-
ment can not be obtained from their mobility characterization.

Azevedo et al. (2009) analyzed mobility real traces obtained
with GPS technology. They proposed to base the mobility charac-
terization in the study of the probability and the cumulative distri-
bution functions of the velocity, acceleration, direction angle
change and pause time of the user traces. They identified that
velocity and acceleration components follow a Normal distribution
and that the direction angle change component and the pause time
are better represented by a Log-normal. This results are very valu-
able to generate synthetic traces of users in general scenarios. But
for our target, emulating the user connections to APs, a more
detailed model is required.

Wu et al. (2017) dealt with the complexity of the model cre-
ation by proposing a distributed method for the mobility modeling.
They propose a distributed version of the centralized algorithm
NN-K-SVD. But the resulting model is not suitable for the emula-
tion of user connections to APs.

Thuillier et al. (2018) characterized user mobility by first profil-
ing the users with a the k-mean clustering algorithm. Although our
proposal also creates user clusters, in our case the clustering group
users with similar mobility. On the contrary, Thuillier et al. based
the clustering in the features of call detail records.

In the last decades, data from GSM network records have
allowed the characterization of mobility patterns (Barbosa-Filho
et al., 2018) with a greater volume of samples than other technolo-
gies i.e. GPS. Following this ubiquitous technological evolution,
phones’ Wi-Fi adapters describe in-detail indoor spatio-temporal
resolutions, which were difficult to obtain with previous technolo-
gies, and also provide a large volume of samples. Any Wi-Fi device
sends beacon-like messages to Wi-Fi APs which are gathered in the
AP for logging purposes.

Traunmueller et al. (2018) presented a study focused on
improving urban management and planning decisions using Wi-
Fi probes. They used 54 APs in Lower Manhattan over one week
getting 30 million observations from 800.000 unique devices. After
data anonymization and cleaning processing, they conducted a
graph analysis modeling the AP locations as the nodes, and the user
movement between consecutive APs as the edges. They generated
a street usage intensity network model and paths of travel at a
time. They used the model to interpret pedestrian routes and fre-
quencies of points of interest (ferries, buildings, street connectors,
etc.). Our study differs in that it is mainly focused on the method to
obtain the mobility model, instead of the obtained mobility model.
In any case, our case study, in a comparative scale, uses 425 APs
located on floors and rooms in 18 buildings, resulting in 633000 fil-
tered trajectories recorded in one week. There are other more sim-
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plistic studies which do not consider the user paths, and they
are also focused on the Wi-Fi data set instead of the modeling
method.

Uras et al. (2019) conducted another human mobility study to
identify human density, flows, patterns and heat maps through
Wi-Fi probe data. The experiment setup was on three locations: a
street in Turing, the Alba center, and the University of Cagliari
where they deployed a small number of APs in comparison with
other studies —1, 5 and 8 devices respectively—. They simplified
the statistical methods by setting seven time periods and counting
the permanence time of unique devices in the AP radius. This study
shows the flexibility of these logs to obtain mobility indicators and
ad hoc models. But the method they used to create the model is
very limited for large scale scenarios.

Another important issue with these data sets is the estimation
of the number of mobile devices present at a certain place and time
and the number of people. Oliveira et al. (2019) focused on this
problem using several threshold values with Pearson coefficient
correlations. The article of Balzotti et al. (2018) uses mobile phone
data provided by an Italian telecommunication company to adjust
the length of the movement flow. Hoteit et al. (2017) proposed a
technique to reduce the error between real and estimated human
trajectories and to identify the period of time where users’ loca-
tions remain undefined. We addressed this problem using an
experiment threshold since our context offers less noise in this
undefined user state.

Gao et al. (2010) based mobility modeling in the use of Hidden
Markov Models obtained from data of Wi-Fi infrastructures. But
their goal was to obtain a fine-grained model (a higher precise user
location), instead of a course-grained model (determined by the AP
location or the coverage area). Because we are interested in the
generation of user emulation in fog environments, course-grained
models are more suitable.

Additionally to the work of Gao et al., Markov modeling is stud-
ied in an important number of researches for modeling user mobil-
ity, most of them using GPS traces. Examples of variants for the
Markov modeling are: simple Markov model using GPS traces
(Ashbrook et al., 2002); semi-Markov model using GPS, GSM and
Wi-Fi datasets (Chon et al., 2012); hidden Markov model using
GPS traces (Mathew et al., 2012); mixed Markov model using
GPS traces (Asahara et al., 2011); mobility Markov chain using
GPS traces (Gambs et al., 2012), extended mobility Markov chain
using call detail records (Amirrudin et al., 2013), variable-order
Markov model using GPS traces (Yan et al., 2013), hidden semi-
Markov model (Yu and Kobayashi, 2003), or spherical hidden-
Markov model using geotagged Twitter datasets (Zhu et al., 2018).

Our proposal of modeling user mobility with transition matrices
is supported by all these related references. Although they cover a
wide range of alternatives, to the best of our knowledge, we are the
first work that considers a hierarchical modeling based on transi-
tion matrices by fixing the user position in terms of the APs where
they are connected to.

Finally, we cite some related studies that implemented similar
spatio-temporal aggregations with the objective of focusing the
study on a specific region without losing information on the con-
text of the subsumed regions.

Xie et al. (2014) implemented a histogram tree to identify the
region through which a vehicle circulates. Xu et al. (2015) apply
a hierarchical decomposition of the phone location data set from
Shenzhen, China, in mobile phone towers. Both studies obtain a
better performance analysis using this hierarchical decomposition
but in our case, the decomposition is used to describe the flow
model not only to facilitate the operative. It is a vision of the move-
ment with different granularity levels.
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3. Problem statement

In general terms, users’ movements are represented as a tempo-
ral sequence of geographical positions. Often the trajectories are
recorded by GPS devices that offer fine-grained accuracy (Lera
et al., 2017). However, other technologies, and their infrastruc-
tures, make the capture of the passage of users over regions possi-
ble, by associating personal devices and bind points. Phones and
cellular radio towers are an example or, as in our case, Wi-Fi
devices and APs.

It is observed that mobility modeling usually has a high compu-
tational complexity (Fülöp et al., 2009), and the generated models
are particular for specific scenarios and they lack in adaptability to
other scenarios with different geospatial features (Xie et al., 2013).
We propose a geospatial hierarchy user mobility modeling to
address the problem of the computational complexity of large scale
mobility scenarios and the low capacity of adaptation of the
obtained models. Our model defines the interactions between
users and network access devices, and the evolution of these inter-
actions, i.e., the model represents the sequence of APs the users are
connected to during their sessions/tracks.

Fig. 1.a shows an example of an user1 trajectory in the university
campus of the UIB. The user follows the red line path over the back-
ground campus image, that also includes the coverage areas –repre-
sented with hexagons– and the AP of each area –represented with a
numbered blue dot in the center of the hexagon–. This trajectory also
follows a time distribution –the orange dots– that synthesizes the
stay length in that space region.

From the fog infrastructure perspective, the trajectory depends
on the communication probes between the user devices and Wi-Fi
APs. These probes depend on the coverage mesh and the messages
that both entities exchange. In any case, the traffic link, between
the device with the AP in a point in time, enables the characteriza-
tion of the user movement. Thus, we can create an access log that
includes 3-tuples lines relating to time, device/user and AP. We
name this type of data set as wireless session access log. The ses-
sion of a given user corresponds to the sub-set of samples with
the same device identifier. Generally, the wireless session access
log interleaves samples of different user sessions. Fig. 1.b shows
the wireless session access log from the example of Fig. 1.

The key samples of a user session can be even reduced to the
first and the last ones (that indicates the starting and ending
points) and the first one of each new AP connection (blue colored
lines in Fig. 1.b). The other samples are only related to the accuracy
of the samples and they do not provide any additional information.
With this subset of samples, the handoffs2 of the user connections
are identified. We name the handoff trace log to this data subset that
only includes the filtered wireless sessions. Fig. 1.c shows the hand-
off trace log including a single filtered wireless connection session, of
the example in Fig. 1.

Our proposal represents the user mobility model, as in other
previous studies, with a stochastic transition matrix (the Origin–
Destination matrix Barbosa-Filho et al., 2018), that represents the
probability of AP handoffs. We extend that model with the inclu-
sion of a time vector that represents the average length time of
the connection of a user to a given AP. Fig. 1.d shows the transition
matrix and the time length vector of the example.

We also extend the user modeling by defining a geospatial hier-
archy of the network devices where the users are connected to. The
hierarchical modeling is performed by grouping the neighboring
APs in different levels of granularity, by taking into account the
1 We use the terms user and device indistinctly along the paper. They refer to the
concept of thing, in the context of the Internet of Things, an entity that requests a
service or generates and transfers data.

2 A handoff happens when a device changes the AP where it is connected to.
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geospatial organization of the region under study. When this
geospatial organization is taken into account, the adaptation of
the resulting model to regions with different features will be easier
by duplicating zones with similar features or by removing the ones
without similarities.

For example, in a first level, the groups could be created with
the APs in the same building. In a second level, a set of APs in a
building could be split into the parts of the building (for example,
floors or wings), and this would be repeated recursively until the
granularity reaches only one AP per group. For example, Fig. 2
shows a specific case of three levels of granularity.

This recursive geospatial division of the region is directly
reflected in the mobility model because the model is also split into
independent transition matrices for each geospatial zone and each
level. This is also shown in Fig. 2, where the first level is repre-
sented with a matrix of the size of the number of buildings, that
models the movement between buildings in the region under
study. In the second level, a new matrix for each of the buildings
is created to model the movement inside each of them. The matrix
size corresponds to the number of parts a building is divided into.

Once the researchers have a mobility model, they need to adapt
it to a specific problem definition to generate specific synthetic
traces from a general mobility model. A simple and general adap-
tation refers to changing the percentages of each user type, the
number of user types, or the user speed, between others. But if
geospatial features need to be adapted, non-hierarchical models
can not be adapted easily. In those cases, the use of hierarchical
geospatial models simplified the adaptation process.

Fig. 3 shows an example in the context of the study case in
Section 5, a university campus. Imagine that a group of researchers
wants to test the performance of a new fog infrastructure simulat-
ing the movement of the users in their campus (university A).
These researchers do not have access to real data from the stu-
dents’ movement and they decide to adapt a mobility model from
another university that is available in an open repository (univer-
sity B).

The university B model is defined with our hierarchical proposal
and it models a campus with one classroom building (with two
zones inside the building), one teachers’ offices building (with
two zones inside the building), and one student housing (with
three zones inside the building). The problem is that university A
has different geospatial features, with two classrooms buildings
(one of them with similar features to University B and the other
one with the double size), one teachers’ building (with similar fea-
tures to university B) and no student housing. Consequently, the
mobility model of university B is not directly applicable to univer-
sity A.

Because of the hierarchical definition of the mobility model, the
researchers can adapt the model of university B by removing the
student housing, duplicating the classroom building in the building
level of the hierarchy, and by increasing the size of this second
duplicated classroom building by doubling the zones in the
building-parts level. These adaptations are graphically represented
in Fig. 3. Additionally, the figure also shows how the transition
matrices are modified, by also duplicating or removing matrices
and columns/rows of those matrices.
4. Proposed solution

This section presents the details of our proposed method that
covers the requirements to address the research problem stated
in the previous section (Section 3). Our method involves successive
phases of data collection, the definition of the model, and genera-
tion of synthetic data (Fig. 4). By this, researchers are able to create
synthetic traces with the mobility model obtained from these



Fig. 1. Example of a user track and the corresponding mobility model.
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phases. Synthetic traces of user mobility can be exported to simu-
lation/emulation engines for a more realistic evaluation of, for
example, fog environments.

The phases in the method we propose are based on the tradi-
tional problem of characterizing e-business workloads with Cus-
tomer Behavior Model Graphs (CBMG) (Menasce and Virgilio,
2000). But we have extended this method to incorporate a geospa-
tial hierarchy of the APs that: (a) facilitates the adaptation of the
models between scenarios with different geospatial features; (b)
Fig. 2. Example of geospatial hierarc
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reduces the computational complexity of the generation of the
model.

In summary, workload characterization with CBMG uses the
web user requests stored in the web access logs to create users
characterizations based on their web browsing. To do that, the user
sessions are firstly identified, because the end of the user sessions
is not registered in the weblogs. Subsequently, a clustering
algorithm is executed to identify different types of users, and each
user session is associated with one user type. Finally, one web tran-
hical modeling of user mobility.



Fig. 3. Example of model adaptation between scenarios with different geospatial features.

Fig. 4. Complete life-cycle of our proposed method for the hierarchical modeling of user mobility based on transition matrices.
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sition matrix is generated for each user type using the set of user
sessions of that user type.

We propose to revisit this method from e-business workload
characterization (Kurz et al., 2005) to be applied to the problem
domain of user mobility in fog architectures. In our research prob-
lem, we deal with user connections to APs instead of web user
requests.

One of the new challenges of applying or adapting this method
to fog user mobility is the size of the problem. The number of web
pages mapped to states is usually much smaller than the number
of APs in a region under study. Our proposal solves this problem
and the following subsections explain the adaptation of the life-
cycle of this method (Fig. 4) for the user mobility modeling.

4.1. First phase: data collection

Our problem domain only needs to characterize AP connection
length and the handoffs to represent the user mobility. Conse-
quently, the first phase, data collection, is in charge of monitoring
the user mobility by collecting the wireless sessions trace logs that
characterize the user tracks.

The most straightforward solution to gather the wireless ses-
sions trace logs is to use already deployed Wi-Fi infrastructures.
Several commercial alternatives are available in the market for
the tracking of users using Wi-Fi infrastructure and the collection
of the wireless sessions. Any of these alternatives allows us to
gather data about the presence of users, and our problem require-
ments do not need an accurate location of the devices. The
expected data gathered about the users is a log that stores and
relates the user devices (the MAC address), the AP (the one that
corresponds to the coverage area where the device is located in),
and a timestamp.

The output of this phase is the wireless session trace log which
contains periodical data of all the devices and APs in the area under
study. Each line of this trace log includes a tuple of three elements
< time_stamp, user_id, ap_id > stored periodically for all the
devices and all the APs. By this, the wireless session of a given
device can be generated and its handoffs can be also detected.
From the point of view of a simulation of a fog infrastructure, a
handoff is the only relevant event in the mobility of the users. A
handoff involves that the service requests (or the data a device
generates) come from a different AP and, probably, they also follow
a different network route.

4.2. Second phase: model definition

Using the wireless session trace logs, the goal of this phase is to
generate a mobility model using this log. In the context of our
work, we propose to define the user mobility through the connec-
tion time of the devices to a given APs (represented with a time
vector) and the probability of a change of the AP coverage area
(represented with a stochastic transition matrix) (Keramat
Jahromi et al., 2016). This type of model has been previously imple-
mented in other scenarios such as the characterization of e-
business workloads with Customer Behavior Model Graphs
(CBMG) (Menasce and Virgilio, 2000; Kurz et al., 2005).

A straightforward use of the transition matrices could result in
mapping each entry of the matrix with one AP where devices are
connected to, considering the transitions as the probabilities of a
device handoff to another AP coverage area. This first approxima-
tion is not suitable for medium-big scenarios with a high number
of APs in the infrastructure. In those cases, the complexity of the
modeling is increased, resulting even in an unsolvable problem.
Consequently, we propose to group APs, instead of mapping one
AP to one state, and to divide the problem scenario into zones
and levels with different granularity.
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For example, in the first level of a university campus, the region
under study can be split into buildings, mapping each building
with a zone (entry of the matrix) of the region under study. In suc-
cessive iterations, the second levels (the buildings) are exploited by
an isolated analysis of each of them, i.e., the modeling process is
repeated for each building, which has to be split again into zones.

By this hierarchical definition, the zones of the region are mod-
eled independently and, consequently, the model can be modified
by, for example, removing or duplicating zones. This modification
simply results in the modification (removing/duplicating) of the
rows and columns of the transition matrices and the time vectors.
If the final user of the model is interested in applying the results to
other different (but with similar features) mobility scenarios, the
adaptation of an existing model is easier because of the possibility
of modifying the zones of the model.

Fig. 4 contains the steps we propose for the hierarchical model-
ing of the user mobility. In our hierarchical model, the analysis is
split in successive levels of granularity to reduce the complexity,
which results in the isolated repetition of some steps of this phase.

4.2.1. Data cleaning
Data cleaning refers to the analysis of the data set to identify

and remove samples that are not useful for mobility modeling. It
is a very particular process that depends on each data set and
the target of the study. For example, a user can be interested in
removing: users with only one AP sample; samples associated with
a specific AP because it is located outside the region under study,
samples associated with a specific device, samples in a time inter-
val (during the night), etc.

4.2.2. Hierarchical region definition
Our proposal considers physical areas split into hierarchical

zones. Each region is divided into zones, and the zones are recur-
sively considered as sub-regions that are also divided into new
zones. Each region corresponds to, or is modeled by, a pair of tran-
sition matrix and time vector. Similarly, the zones are related to
the row and columns of the matrices/vectors.

Thus, we divide the characterization problem into levels in
terms of geographic, topological, or other types of criteria. An inde-
pendent modeling process needs to be carried out for each zone of
a level recursively. This modeling process consists of the session
identification, data filtering and mapping, clustering and transition
matrix creation (Fig. 4).

The hierarchy starts with the higher level, where the region
under study is divided into N zones, with N being a reasonable
number, neither too small (which reduces the model accuracy)
nor too large (which increases the model complexity). Each zone
is mapped to one state and they include disjoint and geographi-
cally adjacent APs. Once the modeling process is carried out for
the first level, the process is repeated independently for each par-
ticular zone. The hierarchy is constrained by several requirements:
the hierarchy levels are defined until the level with a granularity of
1 AP per zone is reached; each new region that emerges from a
zone only considers APs into the former zone, the new zones covers
all the APs (surjective) and APs are mapped with only one zone
(disjoint).

We include an example of hierarchical division in Fig. 5. The
first level, level 0, divides the area under study into two zones
which correspond to two buildings. The APs of each building are
mapped to the corresponding zone. Once the model of level 0 is
generated, the modeling process is repeated for each of the zones
in level 0, i.e., a modeling process is executed for the first building
(zone S0) and the second building (zone S1). These two new level 1
regions are split in terms of the wing of the buildings. This hierar-
chy is split in a reasonable number of levels until each zone only
covers one AP, as in our example which requires three levels.



Fig. 5. Example of the hierarchical approach for mobility modeling.

F. Talavera, I. Lera and C. Guerrero Journal of King Saud University – Computer and Information Sciences 34 (2022) 2471–2487
The use of a hierarchical division of the region under study also
facilitates the generalization of the resulting model. As we previ-
ously explained, the number of open mobility models is very
reduced and the possibility to generalize the existing one is an
important point. A hierarchical model easily allows to remove,
duplicate, or modify some regions of the resulting model to adapt
it to a different study case. Consider an open model that considers
three buildings of a university campus, one building is a student
housing, another one contains the teaching classrooms, and the
teachers’ office rooms are in the last one. If we need to adapt this
model to a different campus, for example with three classroom
buildings or without student housings, we can adapt it by duplicat-
ing the part corresponding to the classroom building or by remov-
ing the model of the housing building. This generalization can be
also performed in terms of user types, popularity probabilities, etc.

4.2.3. Device session identification
Once the data is loaded and cleaned, the next step is to identify

the users. We assume that a MAC address corresponds to one user.
Consequently, the selection of the samples of a user requires to fil-
ter by the MAC address. Not only the users need to be identified,
but also the user sessions. A session is defined as each of the visits
that a user does to the region under study during the time of the
experiment. In other words, if a user leaves the region under study
and comes back again, these two visits result in two different user
sessions.

From the point of view of the infrastructure, a user session is
defined as a device that enters the coverage perimeter defined by
the levels of the study at a certain point in time, it is in the area
for a specific period of time, and it leaves it. The Wi-Fi infrastruc-
ture does not register the disconnections in the data sets and, con-
sequently, the session detection is conceptually determined when:

� The user changes between regions under study.
� None connections are detected after a certain period of time.

And these two criteria are carried out over the data set by
detecting when:

� A sample of a user is associated with an AP that does not belong
to any of the zones of the current area under study.
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� The time between two successive connections of the same
device is greater than a defined threshold value.

The definition of the threshold value for the user session iden-
tification implies carrying out a preliminary study to calculate
the optimal threshold time for the data set that is being analyzed.
For example, in our case study in Section 5, a range of defined
threshold values are tested and, for all of them, the Euclidean dis-
tance between the number of sessions and the average connection
time of these is calculated. The optimal threshold is determined by
the smaller Euclidean distance, based on the idea that the best
threshold is the one that balances the total number of sessions
and the length of the sessions (Kurz et al., 2005).
4.2.4. Data filter/map
Once the different user sessions are identified, not all their sam-

ples in the data set provide useful information. Consequently, the
samples are filtered by keeping:

� The first sample of a consecutive subset of samples with the
same AP identifier. This corresponds to the handoffs (AP
changes) of a user session.

� The first and the last sample of each session. They identify the
entry and exit points of the user session.

The result of this phase is a subset of samples that represents
the session start, end and the AP changes. Fig. 1.c shows an exam-
ple of the subset obtained from Fig. 1.b.
4.2.5. User profiling: clustering
Human behavior is very different and it cannot be determined

only with a general model, and the same pattern for all users is
not realistic nor accurate. Consequently, it is important to split
users with similar mobility patterns. The goal of user profiling or
segmentation is to achieve a clear description of how the users
in each cluster behave and move around the area under study.
Clustering is the usual solution for this type of profiling and it is
necessary to trade off the number of user types (as smaller as pos-
sible) and the suitability of the model (as accurate as possible)
(Hardy, 1996).
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We characterize the behavior of the users in terms of the per-
centage of time that they spend in a specific zone of the region
under study. Consequently, each user session is characterized with
a n-tuple probability vector, where n is the number of zones in the
region under study. This vector represents the probability of the
user being in each of the zones, calculated as the total time in each
zone divided by the session length.

The selection of a clustering algorithm depends on many factors
(Abbas, 2008). For example, in our case study, we implement the k-
means algorithm because of its simplicity and its generalized use.
4.2.6. Transition matrix and time vector creation
Once the users are split into different groups according to their

behavior using a clustering process, a data model is generated for
each of the clusters. This data model is made up of a transition
matrix and a vector with the average stay length in each zone.

The transition matrix represents the transitions between zones,
where each element ai;j of the matrix is the probability to go to a
zone j when a user is in zone i. Each element ai;j is calculated as
the total number of handoffs from i to j divided by the total num-
ber of handoffs for all the sessions of the user in a given cluster
group. Additionally, the matrix is completed with two additional
elements labeled as IN and OUT, that respectively represent the
start and the end of a user session. In other words, aIN;j represents
the probability that the zone j is the starting point of a user. On the
contrary, ai;OUT represents the probability that the zone i is the last
zone of a user session. Consequently, aOUT;j ¼ 0 8j and ai;IN ¼ 0 8i.

The stay length vector indicates the average time that a given
user type spends in each zone expressed in time units. Each ele-
ment of the vector v i is calculated as the sum of the time of all
the visits of a user to a zone i divided by the total number of visits
to that zone.

The data models provide a double utility. First, they serve to
characterize the movement of the users of the different groups.
They also are, if necessary, the input for the next phase, the syn-
thetic generation of traces.
4.3. Third phase: generation of the synthetic traces

The objective of this phase is to generate a synthetic data set
using the data model obtained in the previous phase. The most
important advantage of the generation of synthetic traces is that
the resulting model can be extrapolated to scenarios with other
features (for example, changing the number of users, building,
removing some user type, etc.). Additionally, the use of synthetic
traces also guarantees additional anonymization of sensitive
information.

The synthetic data is also a three elements tuple: < time_-
stamp, user_id, ap_id>, in front of the original < time_stamp,
device_id, ap_id > tuple. The user identifier for synthetic tuples
is auto-incrementally generated during the synthetic generation.

Each user trace is generated randomly using the mobility
model. Each time synthetic users are generated, we first randomly
determine the user types they belong to, using either weights
determined manually or by the popularity distribution of the real
data set. Using the probabilities of the transition matrix of that
user group, the entry point (zone) is determined. The time in that
zone is determined with the stay period vector and randomly gen-
erated following an exponential distribution. The second zone in
the user trace is again determined with the probabilities of the
transition matrix. This is repeated subsequently until the zone
OUT is chosen randomly.

The times of each sample, < time_stamp, device_id, ap_id>,
are mapped to the simulation time, which starts in time 0 and are
incremented in simulation time units. The generation of the users
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is determined by increasing the time of their initial sample with
the average time between user arrivals. This time can be manually
fixed or we can use the one obtained from the real data set. An
exponential distribution is used for the generation of these user
arrivals.
5. Case study: the campus of the University of the Balearic
Islands

We apply our hierarchical decomposition method in the cam-
pus of the University of the Balearic Islands (UIB). UIB is a small-
medium size university with approximately 14,000 students,
1,000 teachers and 800 administrative staff. The Wi-Fi infrastruc-
ture of the university is composed of 425 APs, distributed along
with the 18 buildings in the campus, which are located in a
secluded area of the city, specific for the campus.

In the remainder of this section, we detail the specific aspects to
apply the method proposed in Section 4 to the case of the UIB. At
the end of the section, some of the results obtained for the mobility
model are also commented.
5.1. Data collection

The APs deployed in the UIB are from the company Aruba Net-
works. These APs include the ALE technology (Analytics and Loca-
tion Engine) which collects location and mobility data of the user
devices (Gouin-Vallerand and Rousseau, 2019). Consequently, we
easily implement the data collection phase by using the methods
provided by ALE.

We first use the method access_points to collect the list and
data of all the APs deployed in the Wi-Fi infrastructure of the cam-
pus. Secondly, ALE offers data about the location of the devices/
users with three main methods: proximity, presence and sta-

tion. We choose proximity, since it registers the MAC addresses
of all the detected user devices, whether or not they are logged to
the Wi-Fi network. Method proximity also associates the user
device with the closest AP. Fig. 6 shows an example of the JSON file
returned by the method proximity. In this example, data about
only one device and one AP are represented, but a usual execution
returns all the devices for all the APs.

Note that our API vendor only offers real-time data. Users inter-
ested in analyzing historical data need to store the data persis-
tently, for example, in a database. We implemented a Python
script which requests the method proximity, parses the returned
JSON file, and stores into a database a 3-tuple < time_stamp,
user_id, ap_id > for each device in the coverage areas. ALE is
configured to return the one-way hashed MAC addresses to protect
the privacy of the users. The hash function is salted for periods of
one day to avoid the matching of traces with real users. The script
is executed each minute, so the database stores the device-AP con-
nections with an accuracy of 1 min. The database stores the hashed
MAC address of the user device as the device identifier, and the
MAC address of the AP as the AP identifier.

For this study, we gathered the Wi-Fi probes with a minute fre-
quency during one week, November 9th-15th 2020, obtaining
122 MB of raw data. In this period, partial mobility restrictions
were applied due to COVID-19 pandemic. The presence was
reduced to approximately half of the usual number of users. Addi-
tionally, we conduct several studies, by dividing the data of this
week in different time subsets. More concretely, 9 studies are con-
sidered: one for each single day of the week, one for the five work-
ing days, and one for the weekend. We chose one of them, the
experiment of Monday 9th November, to be analyzed in the results
of this paper. The selected experiment is a suitable example for any
of the working days. If the reader is interested in the other results,



Fig. 6. Example of device tracking log obtained with a commercial tool (Aruba Analytics and Location Engine).

Table 1
Division into zones of the region under study lv0;�;�h i

Zone id. Number of APs Zone id. Number of APs

bldg_AT1 36 bldg_JO 63
bldg_CEP 14 bldg_MA 43
bldg_CJ 7 bldg_MEN 8
bldg_CL 1 bldg_MO 52
bldg_CTI 9 bldg_RES 18
bldg_EIV 11 bldg_RL 42
bldg_GC 35 bldg_SCT 27
bldg_IE 7 bldg_SE 8
bldg_ITD 16 bldg_SL 28

1 Zone selected as the region under study for level 1.

Table 2
Division into zones of the region under study lv1; bldgAT;�h i.

Zone id. Number of APs Zone id. Number of APs

basement_fl 3 1st_fl_East 6
0_fl_North 7 1st_fl_North 7
0_fl_East1 6 2nd_fl 3

1 Zone selected as the region under study for level 2.

Fig. 7. Example of three JSON files for the hierarchical level definition.
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they can be accessed in the data repository associated with this
work 3.

5.2. Model definition

5.2.1. Data cleaning
In the data cleaning process we remove the samples of sessions

formed by a single connection. Thus we avoid samples of passersby
who simply pass near the campus but do not make any route
within it.

5.2.2. Region definition
Using the hierarchical definition of our method, we define three

levels in the division of the university campus. At the initial level
(level 0), the entire campus is considered, dividing it into as many
zones as buildings. Table 1 shows the 18 zones, with a range of APs
per zone between 1 and 63.

At the second level (level 1), we study the movements individ-
ually for each building. We split each building into floors and
3 https://github.com/ocsix6/mobility-analysis-corporate-wifi
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wings. Finally, at the last level (level 2), each floor-wing is divided
into zones that only includes one AP.

Each region under study has a 3-tuple identifier based on the
level, the building acronym and the floor-wing,
level; building;wingh i. For example, level 0;�;�h i refers to the
analysis of level 0 that corresponds to the movement of users
between buildings, level 1; buildingA;�h i refers to the analysis of
mobility of the users between wings of Building A, or
level 2; buildingA;northSecondFloorh i refers to the analysis of the
user movement between the APs in the north wing of the second
floor of Building A.

The high number of regions by level inhibits a detailed descrip-
tion of each of them in this article. For this reason, we only explain
one region from each level. More concretely, the explained regions

https://github.com/ocsix6/mobility-analysis-corporate-wifi


Fig. 8. Euclidean distances between number of user sessions and average session times.
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under study are lv0;�;�h i, lv1; bldgAT;�h i, and lv2; bldgAT;0flEh i,
all of them from the period corresponding to Monday 9th Novem-
ber 2020. The results for the other regions under study are pub-
lished in the data repository 4.
4 https://github.com/ocsix6/mobility-analysis-corporate-wifi
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Table 1 shows the number of APs in each zone of the region
under study lv0;�;�h i. At this level, one zone is created for each
of the buildings on the campus.

Table 2 shows the number of APs in each of the zones defined in
the building bldg AT , used as an example of the region under study
for level 1. It is a four-storey building and two wings (north and
east), with an approximate occupation of 800 students and 100
teachers where, due to the architecture of the building, we delimit

https://github.com/ocsix6/mobility-analysis-corporate-wifi


Fig. 9. Elbow method to detect the optimal number of clusters considering the distortion metric and with a maximum number of 30 clusters.
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one single zone for the basement and the second floor, and two
zones –one for each wing– for the ground floor and the first floor.

Finally, the wing 0 fl East is selected as an example of the region
under the study of level 2. This is the deepest level in the region
hierarchy and each APs is defined as an isolated zone. Thus, 6 zones
are considered, one for each AP.

We implement the definition of each of the levels using a JSON
file that specifies the APs included in each zone. Fig. 7 shows the
source code of the JSON files corresponding to the three areas
under study explained in this section.
5 We measure the intergroup distance using the distortion metric. The distortion is
calculated as the average of the squared distances from the cluster centers of the
respective clusters.
5.2.3. Device session identification
As we commented in Section 4.2.3, the user disconnections are

not registered in the trace logs and user sessions may be deter-
mined manually. An iterative process, with an incremental thresh-
old value, calculates the number of sessions and the average
connection time over all the users for each threshold value. The
desired threshold is the one that reduces both the number of ses-
sions and the average session length. Consequently, we use the
Euclidean distance because it indicates the threshold value which
balances both metrics. The threshold value depends on each data
set and, consequently, the process of threshold definition must
be repeated for each region under study.

Fig. 8 represents the evolution of the Euclidean distance as the
threshold value is increased. Three plots are presented, one for
each region included in this section.

For lv0;�;�h i, the smaller Euclidean distance results in a
threshold of 30 min. This threshold corresponds to the case of
11,520 user sessions with 4,883.7 s of average session time. In
the example for level 1, lv1; bldgAT;�h i, the threshold is also
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defined in 30 min, with 11,570 user sessions and 4,737.0 s of aver-
age time. Finally, lv2; bldgAT;0flEh i results in a threshold of 29 min
with 12,599 users and 4,252.7 s of session time.

Once the threshold value is selected, the user sessions can be
recalculated considering the criteria explained in Section 4.2.3.
5.2.4. Data filter/map
The data filtering is straightforward, and it only requires to loop

through each user session, taking into account the threshold value
of the previous phase. The process keeps the first sample in the ses-
sion, the first sample of a new AP subset, and the last sample in the
user session. All the other samples are removed.
5.2.5. User profiling: clustering
In our case study, we implement the k-means algorithm for the

clustering of the user sessions. Note that the user mobility is char-
acterized by their zone probability vector, the vector that indicates
the probability for a given user of being in a given zone of the
region under study. Consequently, we first calculate those vectors
for each user session.

In the case of the k-means algorithm, similarly to some other
clustering methods, the number of clusters is an input value of
the algorithm. Thus, a previous study of the suitable number of
clusters needs to be performed. We calculate it through the elbow
method (Syakur et al., 2018). The objective behind this is to mini-
mize both opposite metrics of intergroup distance5 and the number
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of clusters. The elbow method determines the optimal number of
clusters k like the number of clusters from which the improvement,
in terms of intergroup distance, obtained by increasing this number
of clusters is so small that it does not justify the additional cost
(complexity) of increasing the number of clusters. This is graphically
determined in the elbow of the curve, hence the name of the method
(Fig. 9).

Fig. 9 shows the elbows for the three regions under study that
we present in this section. We can see that the optimal number
of clusters is 10 for lv0;�;�h i , 6 for lv1; bldgAT;�h i , and 6 for
lv2; bldgAT;0flEh i. Once the optimal number of clusters is defined,
the k-mean algorithm is executed and the clusters for each region
are generated.
5.2.6. Transition matrix and time vector creation
The final step is the generation of the transition matrices and

the time vectors. In this step, we obtain one pair of matrix–vector
for each user cluster, i.e., ten matrices and vectors for lv0;�;�h i,
six for lv1; bldgAT;�h i, and six for lv2; bldgAT;0flEh i, because the
total numbers of user profiles (clusters) for each case are 10, 6,
and 6.

Instead of representing these 22 matrices/vectors, we only
show one pair of matrix–vector from each of the three regions.
The other ones are available in the open repository. Eq. 1 shows
the transition matrix for one of the 10 user profiles generated in
lv0;�;�h i, and Eq. 2 the average stay time in minutes for each
building of that region. Eq. 3 and Eq. 4 respectively show the tran-
sition matrix and the time vector of one of the 6 user profiles in
lv1; bldgAT;�h i. Finally, Eq. 5 and Eq. 6 correspond to the mobility
model of one of the six profiles in lv2; bldgAT;0flEh i.
ð1Þ

ð2Þ
ð3Þ

ð4Þ
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ð5Þ

ð6Þ

Additionally, the chord diagrams of the transition matrices are
generated to improve the interpretability of the models. Fig. 10
presents the chord diagrams of the three examples presented in
the previous paragraph, where the arcs represent the flow of the
users between zones of a region, and the sizes of the arcs represent
the frequency (probability) of the flows.

5.3. Generation of the synthetic traces

Once the user mobility model is obtained, it can be incorporated
in a simulation/emulation tool. There are two alternatives, the
incorporation of the data of the model (matrices and vectors) or
the creation of a synthetic trace log that is read by the simulator.

Our mobility model leaves the simulator designer the responsi-
bility of defining the user arrival rate and the popularity of the user
types. Thus, the simulator designer is able to change the workload
of the system in terms of the number of users.

We implemented a Python script that randomly generates users
and assigns them to a user type. For each new random user arrival,
the user track is generated with the transition matrix and the time
of the handoffs is determined with the time vector.
5.4. Result analysis

The analysis of the results consists of twofold validations that
test the correctness of the obtained model and its complexity.

The first, in Section 5.4.1, checks if the model generated with
our method reflects accurately the movement of the users. For this
case, the comparison with other previous works is not required,
because we can compare the resulting model with the real raw
data. In any case, we do not either compare our method with other
research works because of our hierarchical definition, that is not
studied in any previous works. Comparison with non-hierarchical
models is not possible because the transition matrices have differ-
ent shapes (different numbers of matrices and matrix sizes) and
meaning.



Fig. 10. Chord diagrams for three examples of the regions under study.
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Secondly, in Section 5.4.2, the complexity and extrapolation of
the resulting hierarchical model is evaluated and compared with
a previous proposed non-hierarchical model (the Origin–Destina-
tion matrix) (Barbosa-Filho et al., 2018).

5.4.1. Mobility model analysis
We have designed an experiment to analyze the quality of our

model generation that consists of obtaining a second mobility
model considering the synthetic traces generated with the first
model. The greater the statistical similarity between both models,
the best accuracy our proposal shows. We compute, and analyze,
this statistical similarity with the mean square error (RMSE) over
the transition matrices and the time vectors of each user.

The complete process for the analysis of the case study is: (i) the
gathering of real log traces; (ii) the generation of the mobility
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model of those traces; (iii) the creation of synthetic traces from
the mobility model obtained; and (iv) the generation of the mobil-
ity model of these latter synthetic traces. Finally, the RMSE is cal-
culated between the models obtained in (ii) and (iv).

The user types in (ii) and (iv) are mapped and the RMSE is cal-
culated between the matrix/vector in each user type of (ii) and its
corresponding matrix/vector in (iv). Table 3 shows the average and
maximum value of the RMSE for both the transition matrix and the
time vector. Additionally, the error percentages are also included
between brackets.

The error levels are smaller in the case of the transition matrix,
whose average values range between 7.7% and 1.5% and they are
always smaller than 9.8%. In the case of the time vector, the
average error level ranges between 4.5% and 16.8%, and the maxi-
mum RMSE is 20.08%. Note that the second region under study,



Table 3
Maximum and mean value of the RMSE for the matrices and vectors of each region under study.

Region Transition matrix Time vector (s.)

avg. max. avg. max.
RMSE RMSE RMSE RMSE

lv0;�;�h i 0.025 (2.5%) 0.057 (5.7%) 25.449 (4.5%) 62.207 (11.1%)
lv1; bldgAT;�h i 0.077 (7.7%) 0.098 (9.8%) 25.634 (16.8%) 31.651 (20.8%)
lv2; bldgAT;0flEh i 0.015 (1.5%) 0.038 (3.8%) 6.268 (5.6%) 17.826 (16.0%)

Fig. 11. Elbow method to detect the optimal number of clusters considering the
distortion metric and with a maximum number of 400 clusters.
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lv1; bldgAT;�h i, is the one with highest differences between both
mobility models, and the case that increases the general error
levels.

In general terms, we can conclude that the obtained model is
more accurate in terms of the flow of the users between zones than
in the time spent in a given zone.
Table 4
Execution times for the modeling process.

Region Execution time (s.)

Total Elbow Clustering

Non-hierarchical 14119.22 13816.04 30.64
lv0;�;�h i 197.95 157.86 1.97
lv1; bldgAT;�h i 25.48 3.22 0.17
lv2; bldgAT;0flEh i 23.89 2.74 0.15
5.4.2. Hierarchical design analysis
Our mobility characterization method is based on hierarchical

modeling to minimize the impact of large scale scenarios. This
hierarchical subdivision of the problem reduces the computational
cost of subsequent analysis’ tasks and even enables its distributed
processing. To answer the RQ1, which states that our model
reduces the complexity of the resulting model, and the execution
time to obtain it, we have compared our hierarchical model with
a non-hierarchical model, such as the one defined in previous
related works, the Origin–Destination matrix (Barbosa-Filho
et al., 2018).

Fig. 11 shows the number of optimal clusters for a non-
hierarchical process in which each AP of our case study is mapped
with a different zone. This is equivalent to one-level modeling with
425 zones. It is observed that the optimal number of clusters is
much higher in the non-hierarchical modeling, resulting in 158
clusters, in opposition to the maximum number of 10 clusters
across all the levels and regions in the hierarchical modeling. A
smaller number of clusters reduces the complexity of the model
and the execution times of the modeling process, and we have
observed a very significant reduction from 158 to 10 clusters.

Moreover, the elbow point of the non-hierarchical model
(Fig. 11) is less clear than the ones in the hierarchical model
(Fig. 9). The graph in the non-hierarchical case has a slope, or gra-
dient, closer to �1.0. This means that an increase in the number of
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clusters could improve the distortion without a high increase of the
cost/complexity of the clustering, for this non-hierarchical model.

As it has been commented in the previous paragraph, a higher
number of clusters involves higher execution times. Table 4 shows
the execution times for the three examples of the case study and
the non-hierarchical modeling. The total execution time is pre-
sented along with the desegregated time for the calculation of
the optimal number of clusters, and the clustering algorithm. As
it is observed, the execution time has an important improvement
for the case of hierarchical modeling. In general terms, the com-
mon execution time for each region of our case study is around
25 s, except for the case of the level 0, which increases up to 198
s because it is the only one with more than 10 zones. Considering
that the hierarchymodeling of the campus defined 18 areas of level
1 and 74 areas of level 2, the execution time for all the regions
under study is around 2500 s, five times shorter. Additionally,
the execution could be parallelized very easily.

Finally, the goodness of the non-hierarchical modeling is mea-
sured with the RMSE (Table 5). If we compare the RMSE with the
ones of the hierarchical modeling (Table 3), it is observed that,
although the average RMSE is better in the case of the transition
matrices of the non-hierarchical modeling, the maximum value
of the RMSE is similar to the worse case in the hierarchical model-
ing. On the contrary, the error level for the time vector is better for
the case of the non-hierarchical modeling.

To sum up, the hierarchical modeling shows similar error levels
in the transition matrices, but with a worse behavior in the time
vector. The great benefit of a hierarchical method is in the com-
plexity both in the number of clusters and the execution time of
the modeling.

The second research gap that our proposal deals with is to allow
the extrapolation or adaptability of the resulting models between
scenarios with different geospatial features. To answer to this sec-
ond research question (RQ2), we have extrapolated the mobility
model obtained in this case study. Remember that the analysis of
the results of our case study are focused on one building (bldgAT)
in a university campus with 18 buildings. We have extrapolated
this real scenario to a fictitious one with only 3 buildings with sim-
ilar features to bldgAT. To do that, we replicate the model of bldgAT,
and we adapt each of those three replicated transition matrices to
create buildings with different number of winds and floors.

The new modified model is used to generate synthetic traces.
An additional modeling process is applied to compare the results
with the former model of bldgAT. The results show that the average



Table 5
Maximum and average value of the RMSE for the non-hierarchical modeling.

Transition matrix Time vector (s.)

avg. max. avg. max.
RMSE RMSE RMSE RMSE

Non-hierarchical 0.019
(1.9%)

0.088
(8.8%)

4.981
(0.6%)

25.475
(3.1%)
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RMSE are 2.85% and 4.31% respectively for the transition matrix
and the time vector of bldgAT.
6. Conclusions

We have proposed a method for user mobility characterization
based on a hierarchical definition of regions to (RQ1) reduce the
complexity of creating a mobility model based on transition matri-
ces, and to (RQ2) increase the adaptability of the obtained models
between scenarios with different geospatial features. The applica-
bility of the method has been tested in a case study located in
the campus of the University of the Balearic Islands.

The case study was analyzed in terms of the RMSE between the
model obtained from the real data traces and the model obtained
from the synthetic traces created with the former model. Addition-
ally, a non-hierarchical study of the campus was also performed.

By comparing the results between the hierarchical and the non-
hierarchical study, we observed that the complexity of the model-
ing process is much lower in the first one, which answered the
RQ1. Although the non-hierarchical model showed smaller values
for the RMSE, both studies showed acceptable error levels. Addi-
tionally, RQ2 was answered by extrapolating the obtained hierar-
chical model to a scenario with different geospatial features. The
resulting model was used to create synthetic mobility which
showed low RMSE values.

We propose three future research lines that emerge from the
proposal of our method: the integration of geospatial hierarchical
mobility models in a fog simulator, such as iFogSim (Gupta et al.,
2017) or YAFS (Lera et al., 2019); the extension of other mobility
models, instead of the ones that use a transition matrix, with a
geospatial hierarchical design; and, finally, the adaptation of the
proposed method to other problem scenarios, such as the predic-
tion of the user behavior.

In terms of the case study, an interesting future work is to apply
our method to a case study where the user mobility data is gath-
ered with a different wireless technology, for example a 5G net-
work instead of a Wi-Fi. This would prove that our method is not
influenced by the underlying network technology that is used to
gather user mobility data. The main difficulty to carry it on in
the future is to get access to these types of data, which are only
available in the infrastructures of telecommunication companies.
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