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The interplay between antibiotic resistance and bacterial fitness/virulence has 
attracted the interest of researchers for decades because of its therapeutic 
implications, since it is classically assumed that resistance usually entails certain 
biological costs. Reviews on this topic revise the published data from a general 
point of view, including studies based on clinical strains or in vitro-evolved mutants 
in which the resistance phenotype is seen as a final outcome, i.e., a combination 
of mechanisms. However, a review analyzing the resistance/fitness balance 
from the basic research perspective, compiling studies in which the different 
resistance pathways and respective biological costs are individually approached, 
was missing. Here we  cover this gap, specifically focusing on Pseudomonas 
aeruginosa, a pathogen that stands out because of its extraordinary capacity 
for resistance development and for which a considerable number of recent 
and particular data on the interplay with fitness/virulence have been released. 
The revised information, split into horizontally-acquired vs. mutation-driven 
resistance, suggests a great complexity and even controversy in the resistance-
fitness/virulence balance in the acute infection context, with results ranging 
from high costs linked to certain pathways to others that are seemingly cost-free 
or even cases of resistance mechanisms contributing to increased pathogenic 
capacities. The elusive mechanistic basis for some enigmatic data, knowledge 
gaps, and possibilities for therapeutic exploitation are discussed. The information 
gathered suggests that resistance-fitness/virulence interplay may be a source of 
potential antipseudomonal targets and thus, this review poses the elementary first 
step for the future development of these strategies harnessing certain resistance-
associated biological burdens.
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1. Introduction

The fitness (also known as biological success) of a bacterial species 
is its capacity to thrive within a given context defined by nutrient 
availability, physicochemical conditions, presence of antibiotics, etc. 
(Botelho et  al., 2019). Evidently, when considering a pathogen 
microorganism, one feature intimately linked to fitness is virulence, 
since the greater the ability to infect an individual through virulence 
factors and strategies to evade immunity, the more chances it will have 
to survive and multiply (Beceiro et al., 2013). Therefore, although 
fitness has been classically quantified through growth rate and inter-
bacterial competitiveness, these parameters also inseparably impact 
the pathogenic capacity of the bacterium: in general, the slower it 
grows inside the host, the less virulent it will be and vice versa, at least 
in acute infections (Andersson, 2006; Andersson and Hughes, 2010; 
Melnyk et al., 2015). Conversely, when considering chronic infections 
such as those typically appearing in the lungs of patients with cystic 
fibrosis, selection for slow growth and reduced virulence often seems 
to be  the hallmark of successfully adapted strains and hence, the 
analysis of fitness is not that simple in this case (Høiby et al., 2010; 
Lorè et  al., 2012; Malhotra et  al., 2019). Therefore, in the present 
review we will focus on the interplay between resistance and fitness/
virulence in the classic acute infection context, and appealing to a 
sensu lato conception, we will indistinctly refer to virulence or fitness 
because of their abovementioned close linkage although we know that, 
strictly speaking, they are not equivalent terms. Accordingly, the 
concepts of virulence attenuation and biological cost (or burden) will 
also be used as synonymous. Moreover, as shown below, not only 
growth but also other specific virulence-related parameters (motility, 
production of toxins, pigments and/or proteases, cytotoxicity, biofilm 
formation, etc.) (Gallant et al., 2005; Deptuła and Gospodarek, 2010; 
Stickland et al., 2010; Pérez-Gallego et al., 2016; Schroeder et al., 2017) 
are altered in association with certain resistance mechanisms, which 
supports our inclusive use of both fitness and virulence concepts.

Although there is a classic idea advocating that acquired antibiotic 
resistance often entails an associated biological cost, mostly in terms 
of reduced growth rate and competitiveness in assays mating 
susceptible vs. resistant strains, this assumption is far from being so 
straightforward in reality (Beceiro et al., 2013; Melnyk et al., 2015; 
Vogwill and MacLean, 2015; Melnyk et al., 2017). This notion is based 
on the fact that typical mutation-driven resistance mechanisms may 
have important impacts on relevant biological processes, which end 
up affecting bacterial growth and/or pathogenic behavior (Beceiro 
et al., 2013): (i) mutations in antibiotic targets that reduce the affinity 
of the drug but also impair the efficiency of the original protein; (ii) 
overexpression of β-lactamases entailing high energy costs because of 
the increased amount of protein produced. Additionally, the β–
lactamase enzymatic activity itself and/or the mechanism of 
hyperproduction, potentially causing alterations in the peptidoglycan 
structure and/or its metabolism, could hinder cell viability; (iii) efflux 
pumps hyperexpression, which in parallel to antibiotics may 
excessively extrude other compounds needed for an effective 
pathogenic performance, such as quorum-sensing signals; (iv) porins 
loss, causing a reduced influx of the antibiotic but potentially also of 
other substances that could contribute to efficient growth. 
Additionally, certain porins (e.g., OprF) have been described to take 
part in specific pathogenesis-related events such as host cell adhesion, 
invasiveness, and biofilm formation; thus, these parameters would 

be altered if the porin is disrupted (Beceiro et al., 2013; Fernando and 
Kumar, 2013; Chevalier et al., 2017).

Meanwhile, regarding horizontally-acquired resistance, the fact of 
producing an external protein such as a β-lactamase in high amounts 
(or even large groups of other proteins codified in the same carrier 
mobile genetic element) may entail additional energy burdens and/or 
collateral effects on metabolism, which could impair growth (Beceiro 
et al., 2013; Barceló et al., 2022a). Interestingly, it has been proposed that 
the biological cost associated with horizontally-acquired resistance is 
overall lower than that of the mutation-driven mechanisms, that usually 
have greater impacts on bacterial biology through the abovementioned 
phenomena (Vogwill and MacLean, 2015).

Either way, following the aforementioned simplified conception 
of the interplay between resistance and fitness, susceptible strains 
would be expected to outcompete resistant ones if antibiotic selective 
pressure was eliminated, as has been experimentally demonstrated 
(Vogwill and MacLean, 2015). However, as will be shown throughout 
this review there is also a considerable number of examples in which 
the allegedly typical burden associated with resistance is not found at 
all, and even some cases of increased virulence linked to certain 
resistance pathways (Aoki et al., 2004; Gallant et al., 2005; Roux et al., 
2015; Guillard et al., 2016; Jorth et al., 2017; Cervoni et al., 2021; 
Barceló et al., 2022a,b). The basis underlying these phenomena has 
been explained by different facts, i.e., (i) horizontally-acquired and 
mutation-driven resistance mechanisms that appear to be cost-free 
because of their intrinsic nature and features; (ii) genetic linkage or 
co-selection between resistance and other markers (e.g., presence of 
virulence factors encoded in the same plasmid harboring the 
resistance determinant); (iii) the selection of compensatory mutations 
that specifically reduce the initial burden associated with the particular 
resistance mechanism, and/or mutations that increase general fitness 
irrespectively of antibiotic resistance. In this last regard, the biological 
cost associated with certain resistance phenotypes in Pseudomonas 
aeruginosa has been shown to be  alleviated in hypermutator 
backgrounds, likely due to an increased capacity to acquire cost-
compensatory mutations compared to non-hypermutator strains 
(Perron et al., 2010; Cabot et al., 2014, 2016). All these circumstances 
would thus underlie the phenomenon of perpetuation of resistance 
mechanisms occurring even in the absence of antibiotic pressure 
(Andersson, 2006; Andersson and Hughes, 2010; Schulz Zur Wiesch 
et al., 2010; Melnyk et al., 2015). However, it has also been proposed 
that this outcome may be overestimated in laboratory conditions, in 
which case, compensatory adaptation would not be as effective in vivo, 
a circumstance that should be delved into for the development of 
therapies (MacLean and Vogwill, 2014; McLean et  al., 2019; 
Hernando-Amado et  al., 2022). Therefore, understanding the 
compensation mechanisms of resistance-associated fitness costs is a 
topic of great interest because of its potential therapeutic implications. 
In this sense, some papers on the topic using P. aeruginosa rifampicin 
resistance as a model revealed different typologies of compensatory 
mutations appearing in response to low vs. high costs associated with 
the resistant phenotype, as well as the existence of various epistatic 
interactions finally determining the associated burden depending on 
genetic background and external physicochemical conditions (Hall 
and MacLean, 2011; Qi et al., 2016; Vogwill et al., 2016; Gifford et al., 
2016a,b; Souque et al., 2023). At any rate, an essential first step to fully 
understanding compensatory evolution (which by the way seems an 
insufficiently studied field at least in relevant pathogen species) is to 

https://doi.org/10.3389/fmicb.2023.1270999
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Jordana-Lluch et al. 10.3389/fmicb.2023.1270999

Frontiers in Microbiology 03 frontiersin.org

completely dissect the resistance vs. fitness/virulence interplay from a 
basic and fundamental research perspective, the goal addressed in 
this review.

Altogether these facts suggest that the interplay between antibiotic 
resistance and fitness is a topic of extreme complexity in which many 
elements are involved. Thus, it has to be  dissected by taking into 
account different factors, such as the specific resistance-causing 
pathway, scenario (in vitro vs. in vivo, laboratory conditions vs. clinical 
context), type of mechanistic basis (horizontally-acquired vs. 
mutation-driven), and, obviously, the bacterial species. A multitude of 
published studies in the field are available for different pathogens 
(Andersson, 2006; Andersson and Hughes, 2010; Beceiro et al., 2013; 
Melnyk et al., 2015, 2017; Guillard et al., 2016; Cepas and Soto, 2020), 
being an important part of the knowledge likely generalizable for a 
wide range of species. However, because of its outstanding importance 
as a human opportunistic pathogen, its multidrug-resistant nature, 
and the urgent need for the development of new therapeutic weapons 
(Bassetti et al., 2017; Reig et al., 2022), here we focus on the interplay 
between resistance and virulence in P. aeruginosa exclusively. 
We include classic works but also particular and/or recent results that 
have not been found in other species, and that therefore deserve an 
update. To make the analysis easier, the topic is split into two parts, 
respectively reviewing the basic research and fundamental knowledge 
about i) the impact of horizontally-acquired resistance on fitness/
virulence; and ii) the burden associated with mutation-driven 
resistance mechanisms. An overview of the main findings on both 
subjects in P. aeruginosa is shown in Tables 1, 2, respectively.

2. Horizontally-acquired resistance

Virtually all the knowledge regarding the biological cost of 
horizontally-acquired resistance in P. aeruginosa deals with the 
incorporation of β-lactamases from any of Ambler’s classes, including 
extended spectrum β-lactamases (ESBLs) and carbapenemases (Yoon 
and Jeong, 2021). In P. aeruginosa these enzymes are usually encoded 
in class I  integrons, which are the predominant platforms for 
acquisition of resistance markers and ulterior dissemination through 
transferable elements such as plasmids. Excellent reviews on the topic 
can be resourced for more information concerning these resistance-
related vehicles and their mechanisms of horizontal transfer (Escudero 
et al., 2015; Zhao and Hu, 2015). Besides β-lactamases, it is usual that 
different aminoglycoside-modifying enzymes and even other less 
frequent determinants (e.g., fluoroquinolones and colistin resistance 
genes) are carried in integrons/plasmids (Chávez-Jacobo et al., 2018; 
Khan et al., 2020; Kocsis et al., 2021; Nitz et al., 2021), although little 
knowledge regarding their biological cost is available. An exception to 
this is a recent paper in which the burden of the colistin resistance-
conferring gene mcr-1, more commonly found in Enterobacteriaceae, 
was assessed suggesting the worrisome absence of any associated 
fitness barrier for the spread of this determinant in P. aeruginosa 
(Cervoni et al., 2021; Table 1).

Returning to the balance between horizontal β-lactamase-
dependent resistance and virulence in P. aeruginosa, the volume of 
published information is not as high as for other species (Marciano 
et al., 2007; Dubois et al., 2009; Cottell et al., 2012; Fernández A. et al., 
2012; Cordeiro et al., 2014; Colquhoun et al., 2021, 2023; Rajer and 
Sandegren, 2022), but some interesting data are available. For instance, 

Gallant and colleagues showed that the production of the cloned 
enzymes TEM-1 and OXA-3 (an OXA-2-related variant) caused 
significant defects in twitching motility, adherence, and biofilm 
formation of P. aeruginosa without affecting its growth, which suggests 
a finely tuned pathogenic behavior modulation rather than a general 
loss of biological efficacy (Gallant et  al., 2005). Meanwhile, the 
production of the penicillinase PSE-1 had no apparent effects on 
P. aeruginosa fitness/virulence according to Ramisse et  al. (2000) 
(Table 1).

More recently, the influence of other acquired β-lactamases on 
P. aeruginosa biological success has been analyzed through different 
assays including the invertebrate Galleria mellonella infection model, 
revealing that the production of some widely disseminated enzymes 
such as the class B carbapenemase VIM-1, the class A ESBL GES-1, or 
the narrow spectrum OXA-2 caused virtually insignificant decreases 
in fitness/virulence (Barceló et al., 2022a; Table 1). In another recent 
study, the burden of producing two less frequent class C transferable 
enzymes related to FOX-3, namely FOX-4 (variant conferring 
resistance to ceftolozane/tazobactam and ceftazidime/avibactam) and 
FOX-8 (a derivative with reduced cephalosporin hydrolysis capacity) 
was approached, and a very minor impact on P. aeruginosa virulence 
was also demonstrated for both (Barceló et  al., 2022b; Table  1). 
Returning to VIM-1, GES-1, and OXA-2 (Barceló et al., 2022a), the 
mentioned results were somehow to be  expected, because if the 
biological burden associated to their expression were high, they would 
not be so usually detected in clinical samples (Oliver et al., 2015; Del 
Barrio-Tofiño et al., 2020; Kocsis et al., 2021). In this regard, some 
studies with different species have shown that plasmids harboring very 
diverse β-lactamases may carry other elements that balance their 
associated burden or even increase the pathogenic potential by 
codifying additional virulence factors (Harrison and Brockhurst, 
2012; Carattoli, 2013; Tsang, 2017; Lee et al., 2020). However, this is 
not the case for the abovementioned VIM-1, GES-1, and OXA-2 in 
P. aeruginosa, since they were produced from multicopy vectors 
devoid of any extra virulence factor, demonstrating a very low burden 
of these enzymes by themselves (Barceló et al., 2022a). A similar result 
had previously been obtained with another cloned class B 
carbapenemase (IMP-1) that did not significantly alter P. aeruginosa 
virulence, supporting the wide dissemination of this metallo-β-
lactamase in this and other species (Aoki et al., 2004, Pongchaikul and 
Mongkolsuk, 2022; Table 1). Interestingly, in the aforementioned work 
(Barceló et al., 2022a) it was shown that, in contrast to OXA-2, the 
production of its extended spectrum derivatives OXA-161, OXA-226, 
and especially OXA-539 entailed dramatic virulence attenuations. 
These were reflected in significant decreases in the G. mellonella larvae 
killing capacity, with lethal dose 50 values of the strains expressing the 
OXA-2 derivatives ca. several hundred-fold higher than those of the 
wild-type strain in some cases. Nevertheless, these phenotypes were 
seemingly not relying on the alteration of other fitness/virulence-
related parameters such as growth rate, cytotoxicity, motility, or 
susceptibility to lysis (Barceló et al., 2022a; Table 1). In the light of 
these data, hypothesizing that the high biological cost may pose a 
barrier for a more usual selection/dissemination of certain enzymatic 
variants with increased hydrolytic capacity (in contrast with the 
originative enzymes), seems reasonable and likely applicable to at least 
some specific β-lactamase derivatives.

Although the exact mechanistic bases for the results exposed in 
these two previous paragraphs remain unclear, some explanations 
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TABLE 1 Overview of the main basic research concerning the interplay between horizontally-acquired antibiotic resistance and fitness/virulence in P. 
aeruginosa.

Horizontally-acquired 
enzyme

Main features Assays/parameters 
measured

Effects on fitness/
virulence

References

blaTEM-1 Narrow spectrum class A 

β-lactamase

In vitro: growth rate, 

attachment to surfaces, 

motility, biofilm formation

Impaired twitching motility, 

adherence and biofilm 

formation

Gallant et al. (2005)

blaOXA-3 Narrow spectrum class D 

β-lactamase

Idem Idem Gallant et al. (2005)

blaIMP-1 Class B carbapenemase In vitro: cell culture invasion

In vivo: murine bacteremia 

model

No attenuation of killing 

capacity in the murine 

model, although a slight 

decrease in the invasion 

capacity was seen.

Aoki et al. (2004)

blaVIM-1 Class B carbapenemase In vitro: growth rates, motility, 

cell culture invasion, 

cytotoxicity, susceptibility to 

osmotic shock and lysozyme-

mediated lysis

In vivo: G. mellonella larvae 

killing model

Absence of significant 

impacts on G. mellonella 

killing capacity

Barceló et al. (2022a)

blaGES-1 Class A ESBL Idem Idem Barceló et al. (2022a)

blaOXA-2 Narrow spectrum class D 

β-lactamase

Idem Very slight virulence 

attenuation in G. mellonella 

model (minor increase in 

LD50 values: < 2-fold 

compared to wildtype)

Barceló et al. (2022a)

blaOXA-226 OXA-2-derived ESBL conferring 

resistance to CAZ/AVI and TOL/

TAZ

Idem Significant attenuation in G. 

mellonella model (notably 

increased LD50: ca. 3-fold)

Barceló et al. (2022a)

blaOXA-161 Idem Idem High attenuation in G. 

mellonella model (highly 

increased LD50: ca. 10-fold)

Barceló et al. (2022a)

blaOXA-539 Idem Idem Dramatic attenuation in G. 

mellonella model (extremely 

increased LD50: > 100-fold)

Barceló et al. (2022a)

blaFOX-4 blaFOX-3-related class C 

β-lactamase conferring resistance to 

CAZ/AVI and TOL/TAZ

In vivo: G. mellonella larvae 

killing model

Slight virulence attenuation 

in G. mellonella model 

(increase in LD50: < 3-fold)

Barceló et al. (2022b)

blaFOX-8 blaFOX-3-related class C 

β-lactamase with reduced 

cephalosporin hydrolytic capacity

Idem Idem Barceló et al. (2022b)

blaPSE-1 (CARB-2) Class A penicillinase In vitro: growth rates and 

production/activity of 

extracellular virulence factors 

(alginate, proteases, elastase 

and rhamnolipid)

In vivo: murine model of acute 

respiratory infection

Virtually absent attenuation 

of virulence in mice and very 

minor effects on the rest of 

parameters.

Ramisse et al. (2000)

mcr-1 Phosphoethanolamine transferase 

driving to LPS modification and 

derived colistin resistance

In vitro: growth rates, 

competition assays, detergent 

sensitivity, permeability assays

Absence of biological burden: 

no effects on growth or cell 

envelope homeostasis

Cervoni et al. (2021)

ESBL, extended spectrum β-lactamase; CAZ/AVI, ceftazidime-avibactam; TOL/TAZ, ceftolozane/tazobactam; LD50, lethal dose 50; LPS, lipopolysaccharide.
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have been proposed. For instance, Gallant et al. hypothesized that 
β-lactamases from the A and D classes (TEM-1 and OXA-3), because 
of their relatedness to low molecular weight Penicillin Binding 
Proteins (PBPs), could be sequestering the peptidoglycan substrates 
of such enzymes in the periplasm. This fact would in turn alter the cell 
wall metabolism/architecture and, consequently, impair the 
abovementioned virulence-related parameters (Gallant et al., 2005). 
Interestingly, an intact enzymatic activity was shown to be necessary 
to cause the fitness cost associated with TEM-1 but not with OXA-3, 
suggesting a different mechanistic basis linked to each β-lactamase 
(Gallant et al., 2005). Closely related to this, the important virulence 
attenuation associated with the aforementioned ESBLs, OXA-161, 
OXA-226, and OXA-539 but not with their parental enzyme OXA-2, 
suggests certain involvement of the enzymes’ active sites, because if 
mutations change the hydrolytic spectrum of β-lactamases (from 
narrow to extended), why should they not be altering the effect on 
other substrates? Moreover, in this same work, it was shown that the 
higher the ceftazidime hydrolytic capacity of each variant 
(OXA539 > OXA-161 > OXA-226), the greater the virulence 
attenuation associated, reinforcing the idea of a starring role for the 
active site of the β–lactamases. In this sense, it was proposed that, 
given the common evolutionary origin of certain β-lactamases with 
endo/carboxy-peptidase PBPs, a residual peptidoglycan-degrading 
power could exist for the former, fact in which an alteration of cell wall 
metabolism could rely on to finally impair fitness/virulence (Chang 
et al., 1990; Bishop and Weiner, 1992; Damblon et al., 1995; Rhazi 
et al., 1999; Urbach et al., 2008; Fernández A. et al., 2012; Pratt, 2016; 
Barceló et  al., 2022a,b). Obviously, this would be  the case for the 
mentioned OXA-2-derived ESBLs but not for the originative enzyme, 
whose active site would remain unable to significantly cleave 
peptidoglycan. Whether the alleged residual activity of the mentioned 
ESBLs could affect the murein sacculus itself weakening its structure 
(Pérez-Gallego et al., 2016; Torrens et al., 2017; Barceló et al., 2022a,b) 
and/or potential peptidoglycan soluble fragments (muropeptides)-
based signaling networks ultimately regulating pathogenic behavior 
(Folkesson et  al., 2005; Escobar-Salom et  al., 2023), remains to 
be elucidated.

Beyond these studies with specific enzymes, it is imperative to 
consider the typical event of association of P. aeruginosa high-risk 
clones (e.g., ST235, ST111, and ST175, among others) with different 
acquired β-lactamases, posing successful combinations of clonal 
lineages plus resistance determinants of epidemic dissemination. This 
fact clearly suggests that—despite having not been assessed in terms 
of their specific biological burdens—enzymes such as OXA-10, PER-1, 
NDM-1, KPC-2, VIM-2, and certain GES-type ESBLs/carbapenemases 
among many others, probably do not involve high costs for 
P. aeruginosa because if this were the case, their appearance would not 
be that frequent (Oliver et al., 2015; Del Barrio-Tofiño et al., 2020; 
Kocsis et al., 2021). On the other hand, it is not possible to fully rule 
out the well-known phenomenon of certain plasmids encoding 
features that alleviate the biological cost of β-lactamases contributing 
to this outcome (Harrison and Brockhurst, 2012; Carattoli, 2013; 
Tsang, 2017; Kottara et al., 2018; Pongchaikul and Mongkolsuk, 2022), 
although, to our knowledge, this fact has not been specifically 
demonstrated in P. aeruginosa. This contrasts with other species such 
as K. pneumoniae, in which the phenomenon seems to be frequent 
(Gomez-Simmonds and Uhlemann, 2017; Jia et al., 2022). Finally, 
although a very specific case of a natural plasmid harboring two widely 

detected β-lactamases (OXA-10 and VIM-2) entailing high biological 
costs when conjugated to P. aeruginosa has been recently described (Li 
et al., 2023), this does not seem to be a common occurrence at all and 
could probably be related to intrinsic features of the starring plasmid 
yet to be determined. Considering all these facts, the idea of a relatively 
low cost associated with most horizontal β-lactamases seems more 
than reasonable. The influence of the species in this outcome is 
obviously also important, being P. aeruginosa a very good carrier of 
enzymes in contrast to other pathogens for which the acquisition of 
specific horizontal β-lactamases seems to entail a significant cost, such 
as the particular case of Salmonella enterica serovar Typhimurium 
producing an Enterobacter cloacae-derived AmpC or a VIM-2 
carbapenemase (Morosini et al., 2000; Cordeiro et al., 2014).

Returning to the molecular mechanisms that mediate the 
biological cost associated with certain horizontal β–lactamases, and 
taking into account that they may not be necessarily common to all 
enzymes, it would be very interesting to fully decipher them in order 
to better understand the interplay between their dependent resistance 
and fitness/virulence in P. aeruginosa. The knowledge gaps to be filled 
in this context are mostly related to the intrinsic burden of specific 
β-lactamases, being of great interest to confirm that globally 
disseminated enzymes are virtually cost-free unlike specific amino 
acid variants, that could be associated with great costs, fact determining 
their limited appearance. In this regard, particularly interesting would 
be the analysis of fitness costs associated with horizontal β-lactamase 
variants (mainly OXA-2, OXA-10, and KPC-2/−3 derivatives) that are 
progressively arising as novel resistance determinants pushed by the 
selective pressure exerted by recently introduced antipseudomonal 
drugs such as ceftolozane/tazobactam, ceftazidime/avibactam, and 
imipenem/relebactam, which have never been studied from the 
fitness/virulence impact perspective (Fraile-Ribot et al., 2018; Arca-
Suárez et al., 2019, 2021; Faccone et al., 2022; Lasarte-Monterrubio 
et al., 2022; Tu et al., 2022; Yang et al., 2023). Finally, it would also 
be  desirable to ascertain whether or not certain plasmid-encoded 
enzymes are linked to genes responsible for burden-alleviating 
mechanisms, which could therefore become interesting therapeutic 
objectives. Another topic not addressed to date in P. aeruginosa is to 
decipher whether the presence of the acquired β-lactamase gene in the 
original plasmid vs. its integration in the chromosome (an outcome 
happening in a considerable number of cases), could entail differential 
biological costs. All this knowledge yet to be developed in future could 
help unveil targets aimed at attenuating P. aeruginosa virulence and/or 
hinder the dissemination of certain β-lactamases, thereby aiding to 
curb the threat posed by this fearsome species.

3. Mutation-driven resistance

As will be  seen in this section, information concerning the 
relatedness between mutation-driven mechanisms and fitness/
virulence in P. aeruginosa (Table 2) is greater than for horizontally-
acquired resistance. As mentioned above, although a general idea of 
decreased fitness/virulence associated with resistance can be obtained 
mostly from studies with collections of clinical strains (Mulet et al., 
2013; Sun et al., 2013; Gómez-Zorrilla et al., 2016; Kaiser et al., 2017), 
when a deeper approach is performed one can see that several 
exceptions exist and many clarifications need to be done. Moreover, 
in this type of studies the resistance phenotype is treated as a whole, 
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TABLE 2 Overview of the main basic research published data regarding the interplay between mutation-driven antibiotic resistance and fitness/virulence in P. aeruginosa.

Mechanism Antibiotics affected Mutational targets Assays/parameters 
measured

Overview of effects on 
fitness/virulence

References

AmpC hyperproduction Antipseudomonal penicillins, 3rd and 

4th generation cephalosporins, 

monobactams

Disruption of PGN metabolism-

related genes (ampD, ampDh2, 

ampDh3, dacB)

In vitro: growth rates, competition 

assays, cytotoxicity, motility, 

susceptibility to PGN-lytic immune 

compounds, transcriptomics

In vivo: G. mellonella larvae killing 

model

When hyperproduction was 

combined with PGN recycling 

blockade (triple ampD-ampDh2-

ampDh3 inactivation), all the 

mentioned parameters were 

significantly impaired. These results 

were supported by the hypo-

expression of LasA, phospholipase C, 

type IV pili, LPS biosynthetic 

pathways, and T3SS components.

No negative impacts for fitness/

virulence detected for the most 

common natural mutational targets, 

such as ampD or dacB disruptions.

Moya et al. (2008), Pérez-Gallego 

et al. (2016), Torrens et al. (2017), 

and Barceló et al., (2022b)

Transcriptional regulator AmpR: 

G154R

In vivo: C. elegans killing model Found to contribute to reduced 

virulence in the C. elegans model.

Sánchez-Diener et al. (2017)

Not determined In vitro: growth rates and

production/activity of extracellular 

virulence factors (alginate, proteases, 

elastase and rhamnolipid)

In vivo: murine model of acute 

respiratory infection

When AmpC hyperproduction was 

combined with the production of the 

PSE-1 horizontal penicillinase, 

virulence on murine model was 

drastically attenuated, as well as the 

secretion of the measured virulence 

factors excepting alginate.

Ramisse et al. (2000)

Changes in AmpC hydrolytic 

spectrum

Additional resistance to TOL/TAZ and 

CAZ/AVI

Structural modification in AmpC 

itself: T96I, G183D, ΔG229-E247

In vivo: G. mellonella larvae killing 

model

No further virulence attenuation 

compared with wildtype AmpC 

hyperproduction.

Barceló et al. (2022b)

OprD loss Carbapenems Disruption of oprD In vitro: growth rates, competition 

assays, biofilm formation, resistance 

to serum, cytotoxicity, production/

activity of extracellular virulence 

factors

In vivo: murine model of acute 

respiratory infection; murine model 

of gastrointestinal tract colonization 

and systemic dissemination

Controversial results depending on 

the study, ranging from slightly 

reduced virulence to hypervirulent 

behavior. Differences in the model 

strains used and the virulence-related 

parameters studied probably account 

for the contradictory outcomes.

Ramisse et al. (2000), Abdelraouf 

et al. (2011), Skurnik et al. (2013), 

and Roux et al. (2015)

(Continued)
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TABLE 2 (Continued)

Mechanism Antibiotics affected Mutational targets Assays/parameters 
measured

Overview of effects on 
fitness/virulence

References

MexAB-OprM hyperexpression Quinolones, macrolides, tetracyclines, 
lincomycin, chloramphenicol, 
novobiocin, most β-lactams

mexR, nalD In vitro: growth rates, competition 
assays, motility, production/activity 
of extracellular virulence factors, 
survival in water and on dry surfaces, 
biofilm formation, cell culture 
invasion
In vivo: C. elegans killing model, 
murine models of acute respiratory 
infection and bacteremia

Controversial results depending on 
the study, ranging from reduced 
virulence (including a decreased 
production of proteases, elastase and 
pyocianin, impaired cell invasiveness 
and killing of nematodes/mice and 
reduced survival in water and on dry 
surfaces) to significantly increased 
virulence. Probably dependent on the 
strain and type of mutation 
(disruption vs. amino acid changes).

Evans et al. (1998), Hirakata et al. 
(2002), Sánchez et al. (2002), 
Abdelraouf et al. (2011), Jorth et al. 
(2017), and Vaillancourt et al. (2021)

MexCD-OprJ hyperexpression Quinolones, macrolides, novobiocin, 
tetracyclines, chloramphenicol, 
cefepime

nfxB In vitro: growth rates, competition 
assays, motility, production/activity 
of extracellular virulence factors, 
resistance to complement, survival in 
water and on dry surfaces, biofilm 
formation, cytotoxicity, T3SS activity, 
cell culture invasion, proteomics and 
metabolomics
In vivo: C. elegans killing model, 
murine model of bacteremia

Clear attenuation of virulence 
reflected in: reduced nematode/mice 
killing, impaired cell invasiveness, 
growth, survival in water/dry 
surfaces, motility, production of 
siderophores, rhamnolipid, elastase, 
phospholipase C, and pyocyanin, 
impaired T3SS performance and 
resistance to complement as well as 
altered proteome-metabolome. 
Altogether, these data reflect a 
globally dysregulated physiology of 
the MexCD-OprJ hyperproducer 
mutants.

Hirakata et al. (2002), Sánchez et al. 
(2002), Linares et al. (2005), Jeannot 
et al. (2008), Stickland et al. (2010), 
and Martínez-Ramos et al. (2014)

MexEF-OprN hyperexpression Chloramphenicol, quinolones, 
trimethoprim

mexT, mexS, parRS In vitro: growth rates, competition 
assays, production/activity of 
extracellular virulence factors, 
cytotoxicity, T3SS activity, biofilm 
formation, motility
In vivo: D. discoideum, C. elegans, 
acute respiratory infection murine 
model, rat pneumonia and colorectal 
anastomotic leak models

MexEF-OprN hyperproducers 
showed a reduced production of 
pyocianin, elastase, and rhamnolipids 
and impaired T3SS performance, 
swarming motility, and biofilm 
formation, which resulted in clear 
virulence attenuations in the different 
in vivo infection models. Accordingly, 
inactivation of the pump increased P. 
aeruginosa virulence in vivo, fact 
associated with improved growth, 
competitiveness, collagenase activity, 
rhamnolipid production, and 
swarming.

Köhler et al. (2001), Cosson et al. 
(2002), Linares et al. (2005), 
Lamarche and Déziel (2011), Olivares 
et al. (2012), Olivas et al. (2012), 
Wang et al. (2013), Luong et al. 
(2014), and Vaillancourt et al. (2021)

(Continued)
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TABLE 2 (Continued)

Mechanism Antibiotics affected Mutational targets Assays/parameters 
measured

Overview of effects on 
fitness/virulence

References

MexXY-OprM hyperexpression Aminoglycosides, quinolones, 

cefepime, colistin

mexZ, parRS In vitro: cell culture invasion assays, 

pyoverdine production

In vivo: murine model of endogenous 

bacteremia

Reduced pyoverdine production 

associated with pump 

hyperexpression, but decreased 

invasiveness and lethality in mice 

caused by a MexXY-defective mutant.

Hirakata et al. (2002) and Ikarashi 

et al. (2021)

DNA gyrase/topoisomerase IV 

alterations

Quinolones QRDR (gyrA, gyrB, parC, parE) In vitro: growth rate, competition 

assays, biofilm formation

Virtually inexistent impact on fitness/

virulence for low level resistance-

causing mutations. High level 

resistance mutations associated with 

dramatic growth and competitiveness 

impairments, readily alleviated by 

compensatory mutations. Impacts on 

fitness/virulence reduced in ExoU+ 

strains.

Kugelberg et al. (2005), Agnello et al. 

(2016), Melnyk et al. (2017)

LPS modification (aminoarabino-

sylation)

Colistin (polymyxin E) Different mutations in two-

component systems (phoPQ, parRS, 

cprRS, pmrAB, etc.) causing arn 

operon overexpression

In vitro: growth rate, biofilm 

formation, cell envelope integrity 

assays, resistance to serum

In vivo: G. mellonella larvae killing 

model

Innocuous effects vs. increased serum 

resistance and biofilm formation plus 

attenuated virulence in G. mellonella, 

after 21 days of colistin exposure in 

morbidostat.

Lo Sciuto et al. (2020) and Javed et al. 

(2021)

PGN, peptidoglycan; CAZ/AVI, ceftazidime-avibactam; TOL/TAZ, ceftolozane/tazobactam; LPS, lipopolysaccharide; QRDR, Quinolone Resistance-Determining Regions; T3SS, type III secretion system.
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i.e., the result of a sum of features, and thus each particular pathway 
or even a set of different mechanisms for a given antibiotic are not 
addressed separately. In fact, it is usual, in these investigations, for 
considerable numbers of clinical strains to display high resistance 
levels [e.g., Multidrug-Resistant (MDR), Extensively Drug-Resistant 
(XDR) (Magiorakos et al., 2012)] derived from combining mutation-
driven and horizontally-acquired mechanisms, making it very difficult 
to establish associations between specific resistances and consequences 
for fitness/virulence. Another confounding factor potentially 
influencing resistance-virulence balance is the clonal lineage of the 
strains since, evidently, depending on the initial pathogenic level of 
each (i.e., strong associations between certain sequence types and the 
presence of potent virulence factors such as the ExoU toxin), the 
resistance-associated burden could vary greatly (Hendrickson et al., 
2001; Sánchez-Diener et al., 2017; Del Barrio-Tofiño et al., 2020; Recio 
et al., 2020).

There are other facts revealing the complexity of the topic: for 
instance, although in some studies several typical virulence-related 
parameters appear to be  impaired in association with high-level 
resistance (pigment production, motility, lethality in animal models, 
susceptibility to serum, etc.), some other specific features such as 
biofilm formation seem to be improved (Mulet et al., 2013; Kaiser 
et al., 2017). Even some examples of controversial results exist, i.e., 
data showing XDR strains with increased in vitro competitiveness 
compared to more susceptible ones, demonstrating again the intricate 
nature of mutational resistance-fitness balance (Kaiser et al., 2017). In 
any case, since dissecting the knowledge related to wide collections of 
clinical strains is not a primary objective here, and there are already 
some reviews addressing the topic (Sawa et al., 2014; Oliver et al., 
2015; Juan et  al., 2017a), we  will focus on basic research only. 
Moreover, despite fitting with the basic research concept, other studies 
with in vitro-evolved mutants also analyze the final resistance 
phenotype as a whole and in many cases, several mutations need to 
be accumulated in order to enable certain resistances (Cabot et al., 
2016, 2018; Gomis-Font et al., 2020, 2022; Barceló et al., 2021), making 
it difficult to extract cause-effect relationships between specific targets 
and impacts on fitness and virulence. For these reasons, we will mostly 
approach here the cases of unequivocal interconnection between a 
specific resistance mechanism and a final impact on fitness/virulence 
in P. aeruginosa, always from a fundamental perspective (Table 2).

3.1. AmpC cephalosporinase

This class C β-lactamase is an inducible enzyme under the control 
of a LysR family transcriptional regulator, AmpR, which depending 
on which muropeptides coming from the degradation of the 
peptidoglycan it is bound to, acquires different conformations. 
Depending on the conformation, AmpR can exert a repressor (in 
regular conditions) or a transient promotor role of ampC expression 
(during the challenge with an inducer β-lactam) which enables 
P. aeruginosa natural resistance to aminopenicillins and 1st and 2nd 
generation cephalosporins (Juan et al., 2017b; Torrens et al., 2019a). 
Besides this regular inducible nature, AmpC stable hyperproduction 
probably poses the most relevant resistance mechanism in this species, 
affecting monobactams, antipseudomonal penicillins, and 3rd/4th 
generation cephalosporins, and can be achieved through the selection 
of mutations in different targets. For instance, mutational disruptions 

of the low mass PBP4 (dacB gene), the cytosolic amidase AmpD or the 
cytosolic muropeptide ligase Mpl, are highly prevalent in clinical 
strains (Del Barrio-Tofiño et al., 2017; López-Causapé et al., 2018; 
Torrens et  al., 2022). These mutations end up altering the 
peptidoglycan metabolism and the derived pool of muropeptides 
binding to AmpR, constitutively enabling its activator role. In 
addition, certain specific amino acid changes in AmpR itself (e.g., 
D135N or G154R) have been shown to cause its constitutive activator 
conformation as well (Cabot et al., 2012; Caille et al., 2014; Juan et al., 
2017b; Torrens et al., 2019a,b).

As expected, the repressed production of AmpC does not entail 
any biological cost for P. aeruginosa (Pérez-Gallego et al., 2016; Barceló 
et al., 2022b) and what is more, its deletion caused a decreased fitness 
in a murine model of infection (Roux et al., 2015). The mechanistic 
basis for this intriguing apparent contribution of AmpC to the basal 
virulence of P. aeruginosa remains to be investigated. Moreover, when 
Cabot and colleagues analyzed the capacity of P. aeruginosa to develop 
β-lactam resistance in mutants devoid of their capacity for AmpC 
hyperproduction (through the disruption of ampC or of ampG, 
encoding the permease that enables the entrance of the AmpR-
activating muropeptides into the cytosol), although some complex 
resistance pathways were selected, their associated biological costs 
were dramatic (Cabot et al., 2018). These results indicate that AmpC 
hyperproduction is a very efficient and virtually cost-free resistance 
mechanism in this species which makes the selection of these 
alternative pathways highly unlikely (Cabot et al., 2018). In fact, most 
pathways driving to AmpC hyperproduction (at least dacB and ampD 
disruptions) have been shown to display no impacts on virulence 
(Moya et al., 2008; Pérez-Gallego et al., 2016; Torrens et al., 2019b; 
Barceló et al., 2022b), which is also supported by the high frequency 
of occurrence of these mechanisms in nature (Del Barrio-Tofiño et al., 
2017). However, a previous work in which AmpC hyperproduction 
was combined with the presence of the acquired PSE-1 β-lactamase 
showed a dramatic reduction of virulence factors production and 
mortality in mice, being proposed a derived defect of intercellular 
signaling as possible explanation for the results (Ramisse et al., 2000; 
Table 2).

On the other hand, some amino acid changes in the AmpC 
sequence itself (e.g., T96I, G183D, or ΔG229-E247) combined with 
hyperproduction have been shown to cause resistance to ceftazidime/
avibactam and ceftolozane/tazobactam, but in exchange for this 
increased spectrum of conferred resistance, there were virtually 
non-existent added burdens (Barceló et  al., 2022b; Table  2). This 
circumstance poses a worrisome warning, since apparently there is no 
biological cost-related barrier to avoid the spread of this kind of 
mutations (Barceló et al., 2022b). Nevertheless, it had been previously 
shown that resistance to ceftolozane/tazobactam developed in vitro in 
non-hypermutator strains, was due to other combined mutations that 
determined global pleiotropic effects associated with a severe fitness 
cost (Cabot et al., 2014). Conversely, in the hypermutator background, 
P. aeruginosa resistance to ceftolozane/tazobactam was associated with 
the mentioned confluence of circumstances (hyperproduction and 
structural modification of AmpC), together with many other 
mutations determining a much lower biological cost compared to the 
non-mutator background, probably reflecting the increased likelihood 
of acquiring compensatory mutations (Cabot et  al., 2014). This 
circumstance was later generally seen for other mutation-driven 
resistance mechanisms (ceftazidime, ciprofloxacin, and meropenem), 
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although with an extraordinary variability in fitness costs depending 
on the mutants analyzed (Cabot et al., 2016). At any rate, although the 
mentioned AmpC structural variations (T96I, G183D, or ΔG229-
E247) conferring resistance to ceftazidime/avibactam and ceftolozane/
tazobactam have been characterized from the fitness cost perspective, 
many other derivatives involved in resistance to these and other new 
antipseudomonal drugs remain to be studied in this regard (Arca-
Suárez et al., 2020; Fraile-Ribot et al., 2020; Gomis-Font et al., 2022; 
Ruedas-López et al., 2022; Gomis-Font et al., 2023).

Still related to the AmpC-associated biological cost in 
P. aeruginosa, but in an even more basic research context, certain 
particular combinations of features such as the triple disruption of 
AmpD-AmpDh2-AmpDh3 homologs (that entail AmpC 
de-repression as well as great peptidoglycan recycling alteration), or 
the over-expression of AmpC from a multicopy plasmid in a 
peptidoglycan recycling-defective strain (AmpG KO mutant) have 
been shown to entail drastic attenuations in terms of G. mellonella 
killing (Pérez-Gallego et  al., 2016; Torrens et  al., 2017). In these 
specific conditions, several parameters linked to this outcome were 
also affected, such as growth rate, motility, cytotoxicity, resistance to 
peptidoglycan-targeting immune proteins, and inter-bacterial 
competitiveness. These circumstances were supported by 
transcriptomics, which revealed a reduced expression of protease 
LasA, phospholipase C, type IV pili (involved in motility), 
lipopolysaccharide (LPS) biosynthetic pathways, or type III secretion 
system (T3SS) components (Pérez-Gallego et al., 2016, Torrens et al., 
2017; Table 2). Although the mentioned combinations of factors do 
not occur in nature, it is interesting to understand the underlying 
mechanisms mediating the virulence attenuation, as this could 
provide information to unveil therapeutic targets. In this regard, it 
has been recently demonstrated that in order to obtain these 
attenuations, an intact enzymatic activity of AmpC is needed (Barceló 
et  al., 2022b) as had been demonstrated for TEM-1 β-lactamase 
(Gallant et  al., 2005), reinforcing the idea of a residual 
peptidoglycanase activity in P. aeruginosa AmpC that could 
be debilitating the cell wall. In fact, a reduction in the amount of 
peptidoglycan per cell, concordant with a potential partially degraded 
sacculus, actually occurred in the mentioned conditions, which could 
be responsible for an increased susceptibility to lysis mediated by 
osmotic changes and/or immune weapons and thus entailing reduced 
fitness/virulence (Pérez-Gallego et al., 2016, Torrens et al., 2017). 
Therefore, this explanation is in accordance with what is mentioned 
above for OXA-2 derivatives, i.e., AmpC potentially displaying a 
significant residual capacity to degrade peptidoglycan (Chang et al., 
1990; Bishop and Weiner, 1992; Damblon et al., 1995; Rhazi et al., 
1999; Urbach et  al., 2008; Fernández A. et  al., 2012; Pratt, 2016; 
Barceló et  al., 2022a,b), either the sacculus itself or signal 
muropeptides participating in potential virulence-regulating 
networks proposed to exist in P. aeruginosa and other species 
(Folkesson et al., 2005; Escobar-Salom et al., 2023).

In this last regard, it is worth highlighting the role of the AmpC 
transcriptional regulator, AmpR, which apparently has an important 
repertoire of virulence-related genes under its control (Kong et al., 
2005; Balasubramanian et al., 2011, 2012). This fact is in accordance 
with the proposed existence of networks of muropeptides acting as 
signals that, once bound to the appropriate transcriptional regulator 
(AmpR or others), could enable its conformational changes ultimately 
affecting the expression of certain genes and thus conditioning 

pathogenic behavior (Folkesson et al., 2005, Escobar-Salom et al., 
2023). Therefore, if the pool of muropeptides is altered through a 
β-lactamase retaining certain peptidase activity, combined or not with 
another particular event such as the peptidoglycan recycling blockade, 
it is reasonable to think that the pathogenic response once these 
fragments bind to the regulator is also modulated (Folkesson et al., 
2005; Barceló et al., 2022a,b; Escobar-Salom et al., 2023). Accordingly, 
it has been shown that certain specific amino acid changes in AmpR 
(e.g., G154R), responsible for a constitutive AmpC-activating 
conformation, also contribute to a decreased virulence of the 
bacterium, which could be related to a repressor role of this particular 
AmpR variant over certain pathogenesis-related genes (Table  2). 
However, this reduction does not seem to pose a significant barrier for 
the dissemination of the ST175 high-risk clone, in which this AmpR 
mutation is readily detected (Oliver et  al., 2015; Sánchez-Diener 
et al., 2017).

3.2. OprD porin

OprD porin-inactivating mutations, a well-known carbapenem 
resistance pathway, have been found to strongly increase bacterial 
fitness/virulence in two studies (Skurnik et al., 2013; Roux et al., 2015), 
probably through different transcriptional and post-transcriptional 
changes motivated by the absence of this porin. However, in previous 
works quite the opposite result had been shown, i.e., OprD deletion 
was associated with a slight decrease in virulence in murine models 
(Ramisse et al., 2000, Abdelraouf et al., 2011; Table 2). Differences in 
the model strains used and the various fitness/virulence-related 
parameters analyzed in each work might well account for these 
discordant outcomes.

3.3. Efflux pumps

Besides AmpC, efflux pumps are probably the most well-known 
resistance mechanism of P. aeruginosa, with those within the 
Resistance-Nodulation-Division (RND) family as the most clinically 
relevant. These pumps are structured in three compounds: an inner 
membrane transporter, a periplasmic adaptor, and an outer membrane 
channel, usually encoded as operons. The existence of a connection 
between certain RND pumps and virulence is a well-known fact in 
Gram-negative bacteria (Fernando and Kumar, 2013; Rampioni et al., 
2017), entailing an obvious interplay with resistance. Regardless, 
although up to 12 different RND efflux systems have been found in 
the PAO1 reference strain, the most relevant variants by far in terms 
of resistance conferred are MexAB-OprM, MexXY-OprM, MexCD-
OprJ, and MexEF-OprN (Lorusso et al., 2022). Altogether, they affect 
virtually all antibiotic families and, similar to AmpC, often display a 
basal level of expression partially accounting for the intrinsic level of 
resistance to several drugs, which can be  amplified through the 
selection of mutations that trigger their overexpression. The array of 
targets/mutations that determine different levels of hyperexpression 
of these pumps and consequent resistance phenotypes is wide and 
complex, but we will only approach the specific mechanisms that have 
been studied from the fitness/virulence point of view. As will be seen 
here, the topic of relatedness between efflux pumps and virulence, 
which is intimately linked to quorum sensing, is probably the one with 
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the most published data within the field of resistance-fitness interplay 
in P. aeruginosa, revealing a great complexity that deserves delving 
into (Table 2).

The MexAB-OprM pump hyperexpression (classically known as 
nalB phenotype) has been related to mutations in different targets 
such as its repressors mexR, nalC, and nalD, and contributes to 
resistance to most antipseudomonal antibiotics, especially quinolones 
and β-lactams (Lorusso et al., 2022). More than two decades ago some 
studies started to characterize the potential costs associated with the 
hyperexpression of this pump, suggesting a significant burden for the 
strains showing this phenotype, with reduced production of 
pyocyanin, protease and elastase, a slightly impaired capacity to 
invade cell cultures as well as a significantly attenuated virulence in 
the nematode Caenorhabditis elegans and murine systemic infection 
models (Evans et al., 1998; Hirakata et al., 2002; Sánchez et al., 2002). 
The excessive extrusion, driven by the hyperexpressed pump, of some 
quorum-sensing autoinducers ultimately regulating the expression of 
virulence genes, was suggested as a possible explanation for these 
results (Evans et al., 1998; Sánchez et al., 2002). More recent works 
have also demonstrated a slight cost associated with MexAB-OprM 
hyperproduction (specifically mediated by mexR deletion) in mice, 
which was very significantly increased when combined with OprD 
inactivation (Abdelraouf et al., 2011). Moreover, hyperexpression of 
this efflux pump seems essential to provide resistance to the recently 
introduced cefepime/zidebactam combination in addition to other 
mutations affecting PBPs, altogether determining very high biological 
costs for P. aeruginosa (Barceló et al., 2021).

Conversely, other investigations showed that MexAB-OprM 
hyperproduction (achieved through mutations in mexR or nalD) was 
associated with increased virulence in murine models in a strain-
dependent fashion: whereas PAO1 mutants displayed a hypervirulent 
behavior, the pump hyperproduction had no effect on PA14 virulence 
(Jorth et al., 2017; Vaillancourt et al., 2021). These data, added to those 
in other studies showing that the deletion/inhibition of mexAB and/
or oprM resulted in dramatically reduced cell invasiveness and 
drastically impaired fitness/virulence in murine colonization/infection 
models (Hirakata et al., 2002, 2009; Aoki et al., 2004; Roux et al., 
2015), suggest the existence of a very intricate connection between 
MexAB-OprM-dependent resistance and virulence. Some 
explanations for these certainly complex results can be provided, such 
as the suggested contribution of this pump to toxin and/or quorum-
sensing signal secretion (Evans et  al., 1998; Hirakata et  al., 2002; 
Sánchez et  al., 2002; Jorth et  al., 2017), the unequal effects of the 
different types of mutations in mexR studied [protein disruption 
(Jorth et al., 2017) vs. specific amino acid changes (Sánchez et al., 
2002)], or the intrinsic features of each P. aeruginosa strain used. 
Either way, all these facts warrant the need for more research to fully 
understand the influence of MexAB-OprM on the modulation of 
P. aeruginosa fitness/virulence.

The MexCD-OprJ efflux pump is controlled by the repressor NfxB 
and its regular expression has an apparent low impact on the basal 
phenotype of P. aeruginosa resistance (Lorusso et al., 2022). Several 
types of mutations in nfxB have been described as a cause of MexCD-
OprJ increased expression, entailing clinically relevant levels of 
resistance mainly to quinolones and cefepime (Jeannot et al., 2008; 
Lorusso et al., 2022). Dealing with virulence interplays, deletion of this 
pump has no effects on P. aeruginosa lethality in a murine model 
(Hirakata et al., 2002), and in contrast with MexAB-OprM in which 

intricate results certainly do exist, all studies point in the same 
direction: overexpression of MexCD-OprJ is associated with 
significant impairments in fitness/virulence. These attenuations have 
been shown to be reflected in different features of the bacterium such 
as growth rate, motility, production of extracellular factors 
(rhamnolipid, elastase, phospholipase C, and pyocyanin), T3SS 
activation levels, and resistance to complement system (Linares et al., 
2005; Jeannot et al., 2008; Stickland et al., 2010; Martínez-Ramos et al., 
2014). The underlying basis for these results seems not to be linked to 
the effects of the NfxB regulator mutation per se, but rather to the 
inappropriate overexpression of a functional MexCD-OprJ efflux 
pump triggering pleiotropic changes that globally dysregulate the 
bacterial physiology (Stickland et al., 2010). Moreover, it has been also 
shown that, similarly to what has been explained for MexAB-OprM, 
hyperexpression of MexCD-OprJ caused an excessive extrusion of 
certain quorum-sensing-related signals (entailing a consequently 
insufficient intracellular concentration), finally impacting the 
expression of certain virulence factors controlled by this system 
(Alcalde-Rico et al., 2018). What is intriguing regarding all these facts 
is how the hyperproduction of this pump can be selected in clinical 
strains with a relatively high frequency (Lorusso et al., 2022) if the 
associated costs are apparently that high? A frequent appearance of 
compensatory mutations is likely the most logical explanation, but this 
possibility has not been experimentally ascertained yet.

Basal expression of the MexEF-OprN system does not contribute 
to the intrinsic resistance of P. aeruginosa, but when hyperproduced it 
significantly increases quinolone resistance levels. Regulation of 
MexEF-OprN is more complex than the rest of pumps, with it being 
influenced by different elements such as MexT (a LysR-like 
transcriptional activator), the oxidoreductase MexS, and the ParRS 
two component system, among others (Wang et al., 2013; Lorusso 
et al., 2022). Hyperexpression of MexEF-OprN is often associated with 
a concomitant decreased expression of the porin OprD (and derived 
carbapenem resistance), which is based on the fact that MexT, besides 
regulating MexEF-OprN expression, also acts as an oprD repressor. 
Thus, amino acid changes driving to increased activity of MexT 
regarding both roles would explain this phenomenon (Lorusso et al., 
2022). Since, as mentioned above, OprD loss seems to be related to 
increased fitness and virulence (Skurnik et al., 2013; Roux et al., 2015), 
it would be  expectable that decreased expression of this porin 
appearing in parallel to MexEF-OprN hyperexpression would have 
similar effects, which could be partially alleviating the attenuation 
associated with the pump. However, this possibility has not been 
experimentally demonstrated yet.

Returning to MexEF-OprN itself, it was proposed more than two 
decades ago that hyperproduction of this pump involved an excessive 
extrusion of certain quorum-sensing signals that would finally cause 
a reduced production of pyocyanin, elastase, and rhamnolipids 
(essential for correct swarming motility), all under the control of the 
las and rhl systems of P. aeruginosa (Köhler et al., 2001). Decreased 
activity of T3SS was also seen to be associated with MexEF-OprN 
overexpression (Linares et al., 2005), which on the other hand was 
shown to cause several changes in the bacterial transcriptome, 
principally in terms of reduced expression of quorum-sensing 
regulated genes. These changes, which entailed significant virulence 
attenuations in different infection models (Dictyostelium discoideum, 
C. elegans, rodents), were found to be pump-dependent as opposed to 
MexT-dependent (Cosson et al., 2002; Lamarche and Déziel, 2011; 
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Olivares et al., 2012). However, MexT was also reported to display a 
direct capacity of control over other virulence-related features such as 
the expression of components of T3SS in a MexEF-OprN-independent 
fashion, reinforcing the complexity of the topic (Tian et al., 2009). It 
was later shown that the biological burden associated with MexEF-
OprN, and in fact with the hyperproduction of the rest of the pumps, 
is partially alleviated through a metabolic re-accommodation based 
on an increased expression of the anaerobic nitrate respiratory chain, 
a response envisaged as an interesting therapeutic target (Olivares 
et al., 2014; Olivares Pacheco et al., 2017). Finally, in accordance with 
the burden associated with hyperproduction, the contrary situation 
(i.e., deletion of the pump or, what is virtually the same, inactivation 
of MexT) has been shown to increase P. aeruginosa virulence in vivo, 
a feature at least partially based on a documented increase in 
collagenase activity, rhamnolipid production, and swarming motility 
(Olivas et al., 2012; Wang et al., 2013; Luong et al., 2014; Vaillancourt 
et al., 2021). However, the underlying mechanisms explaining these 
results remain to be investigated.

Finally, although MexXY-OprM is the typical pump, in some 
strains the MexXY operon contains a coding sequence for another 
outer membrane protein, OprA, which provides the MexXY-OprA 
variant. Regardless, this antimicrobial-inducible pump displays quite 
a wide array of affected antibiotics, among which aminoglycosides are 
probably the most efficiently extruded. Different mutations driving to 
the hyperproduction of this pump have been described, but few 
studies have addressed the associated biological costs (Lorusso et al., 
2022). In this regard, it was shown two decades ago that a P. aeruginosa 
mutant defective in MexXY displayed partially decreased invasiveness 
and lethality in a murine model (Hirakata et al., 2002). Conversely, 
impaired pyoverdine production associated with MexXY-OprM 
hyperproduction has recently been reported (Ikarashi et al., 2021), 
suggesting that only an appropriate level of expression of this pump 
enables a regular pathogenic behavior. These facts once more evidence 
the complex interplay between efflux pumps and the modulation of 
virulence in P. aeruginosa.

Finally, although their impact on P. aeruginosa antibiotic 
resistance seems marginal, other efflux pumps have been studied from 
the fitness/virulence point of view. In this regard, the alteration of 
certain components of the MexGHI-OpmD pump resulted in a 
marked reduction in the production of specific quorum-sensing 
signals and caused the attenuation of virulence in rat and plant models 
(Aendekerk et  al., 2005). Thus, this pump seems to be  intimately 
related to quorum-sensing (Karatuna and Yagci, 2010), a general 
feature for all the aforementioned ones (perhaps with the only 
exception of MexXY), but it has also been linked to the delivery of a 
phenazine required for correct biofilm formation which would have 
obvious virulence-related implications (Sakhtah et al., 2016). On the 
other hand, inactivation of the MuxABC-OpmB system, which causes 
an increased level of carbenicillin resistance, also entailed significant 
impairments in motility and virulence in animal/plant models. 
However, the underlying mechanisms and biological relevance of this 
phenomenon have not been delved into (Yang et al., 2011).

3.4. DNA gyrase/topoisomerase IV

These two enzymes (each comprising two subunits: GyrA and 
GyrB, and ParC and ParE, respectively) are involved in the DNA 

replication process by modulating the level of its supercoiling through 
their nuclease/ligase activities. These enzymes are the target of 
quinolones, which form complexes with them, thus disabling their 
regular activity, thereby blocking DNA replication and finally 
promoting its fragmentation and derived cell death (Malik et al., 2006; 
Bruchmann et al., 2013). These type 2 topoisomerases pose a paradigm 
of mutation-driven resistance caused by alteration of the target and 
derived loss of affinity for the drug. Many amino acid changes in their 
sequences have been demonstrated to cause different levels of 
quinolone resistance in P. aeruginosa and other species, which justifies 
the denomination of certain positions within their sequences as 
Quinolone Resistance-Determining Regions (QRDR). Interestingly, 
not all the mutations in the QRDR have the same effect on the derived 
resistance level, and as could be expected, there is an accumulative 
effect in terms of the phenotype conferred when sequential changes 
in QRDR are selected over time (Bruchmann et al., 2013). In this 
regard, mutations in gyrA and parC are probably those most usually 
found in P. aeruginosa clinical strains (nearly universal in high-risk 
clones), and are usually combined with a concomitant hyperexpression 
of efflux pumps (Bruchmann et al., 2013; Del Barrio-Tofiño et al., 
2017; Melnyk et al., 2017). In terms of biological costs associated with 
QRDR mutations in P. aeruginosa, there is a surprisingly low number 
of publications in the field of basic research (Table 2), with that of 
Kugelberg and colleagues as the pioneer work (Kugelberg et al., 2005). 
In this study, low level resistance was shown to be readily obtained in 
vitro through different single mutations in gyrA or gyrB, which in the 
vast majority of cases were cost-free. However, when selecting mutants 
in intermediate concentrations of norfloxacin (8 mg/L), some of them 
were associated with very important growth impairments. This was a 
general feature for all the selected high level resistant mutants, which 
always displayed two mutations: either in two topoisomerase genes or 
in one topoisomerase gene plus nfxB. The biological cost of these 
mutations was related to a partial loss of function of the mutated 
protein(s): a decreased supercoiling of DNA was appreciated in the 
strains with reduced fitness, which would in turn dampen DNA 
transcription/replication thereby reducing growth rates. When the 
appearance of compensatory mutations was studied, it was seen that, 
due to them, the supercoiling level was recovered in parallel to the 
regular growth rate (although a slight decrease in quinolone resistance 
level was also reported) (Kugelberg et al., 2005). In any case, what can 
be deduced from this study and from the epidemiological panorama 
of quinolone-resistant P. aeruginosa clinical strains nowadays (Oliver 
et al., 2015; Kocsis et al., 2021) is that, although some mutations may 
entail an important fitness cost, selection of compensatory mutations 
seems a frequent outcome that suggests that this type of resistance is 
not an unbearable handicap. In this regard, in a more recent work 
(Melnyk et al., 2017) it was shown that the appearance of cost-free 
quinolone-resistant mutants was much more likely under a 
discontinuous regime of ciprofloxacin compared to a constant one, 
and that the main driver for this output was the appearance of second-
site compensatory mutations rather than the initial selection of cost-
free alleles. However, in this study, virtually all the mutants obtained 
displayed combined mutations in nfxB plus gyrA or gyrB, making it 
difficult to draw mechanism-specific conclusions (Melnyk et al., 2017).

Finally, regardless of compensatory mutations, a fact that likely 
contributes to the success of quinolone-resistance in P. aeruginosa is 
the well-known association between the prevalence of mutations in 
QRDR and the presence of the T3SS-exported ExoU toxin (highly 
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cytotoxic and whose codification is usually exclusive for the less 
virulence-conferring ExoS) (Wong-Beringer et al., 2008; Agnello and 
Wong-Beringer, 2012; Cho et  al., 2014). This circumstance could 
be  interpreted as an additional strategy to minimize the burden 
associated with quinolone resistance; that is to say, if the initial level 
of virulence of a strain is very high (like that of ExoU-positive strains), 
the burden associated with resistance mechanisms would have less 
impact than if the original virulence was lower. However, some recent 
data suggest that the presence of ExoU per se also determines direct 
changes in P. aeruginosa biology enabling a better regulation of DNA 
supercoiling, which alleviates the burden linked to topoisomerases 
mutations (Agnello et al., 2016). Therefore, from this last study one 
could deduce that not only can resistance mechanisms have a direct 
impact on fitness/virulence, but also the opposite: the presence of 
certain virulence factors, such as ExoU, could influence the dynamics 
of mutation-driven resistance acquisition by finely tuning the 
associated costs. This is a groundbreaking idea that should be delved 
into, since other unknown phenomena of virulence factors ultimately 
determining the fate of different mutational resistance pathways 
acquisition may exist, which could pose interesting interconnections 
to be exploited from the therapeutic point of view.

3.5. LPS modification

LPS modifications consisting of the addition of positively 
charged molecules are the major polymyxin resistance mechanism 
in P. aeruginosa, and can be achieved through different pathways 
driving to a reduction in the affinity of the drug. The 
aminoarabinosylation of LPS lipid A has been described as the 
primary colistin (polymyxin E) resistance mechanism in 
P. aeruginosa, and is usually associated with mutations in different 
two-component systems (e.g., PhoPQ, ParRS, CprRS, or PmrAB) 
leading to the overexpression of the arnBCADTEF operon, which 
encodes the enzymes that perform the addition of 4-amino-4-
deoxy-l-arabinose to lipid A (Jeannot et al., 2017). Regarding the 
biological costs of this mechanism, it has been shown that the 
overexpression of this operon and the derived 
aminoarabinosylation have virtually innocuous effects for the 
fitness and virulence of P. aeruginosa (Lo Sciuto et al., 2020). In 
addition, in another work analyzing the collateral effects of 
resistant mutants obtained in a morbidostat device, although an 
increased serum resistance and biofilm formation capacity 
appeared in parallel to colistin resistance, virulence attenuation in 
G. mellonella model was also seen after 21 days of exposure to the 
drug, once more evidencing the intricate nature of resistance vs. 
fitness/virulence interplay (Dößelmann et al., 2017; Javed et al., 
2021). Finally, another less known potential colistin resistance 
mechanism, namely the addition of phosphoethanolamine to lipid 
A through the chromosomal enzyme EptA (Nowicki et al., 2015; 
Freire et  al., 2021), has also been approached regarding its 
potentially associated burden. In this sense, EptA hyperexpression 
has been shown to cause growth, competitiveness, and cell 
envelope defects that were not linked to phosphoethanolamine 
transferase activity per se (Cervoni et al., 2023). This fact could 
explain why other mechanisms based on aminoarabinosylation 
are those appearing in clinical strains and in vitro evolution 
experiments (Cervoni et al., 2023; Table 2).

3.6. Other mechanisms

Finally, some other specific acquired/intrinsic resistance 
mechanisms have been assessed in terms of their associated costs, and 
whereas fosfomycin resistance achieved through deletion of glpT 
(encoding for the glycerol-3-phosphate transporter that enables this 
drug uptake) caused no measurable fitness defects or even a 
hypervirulent response (Castañeda-García et al., 2009; Rodríguez-
Rojas et al., 2010; Roux et al., 2015), the deletion of aph (encoding for 
an aminoglycoside phosphotransferase for high-level resistance to 
kanamycin) caused decreased virulence (Roux et al., 2015). Therefore, 
these data demonstrate once more that cases in which antimicrobial 
resistance mechanisms are devoid of costs or even contribute to 
pathogenesis are not exceptional in P. aeruginosa, and thus contradict 
the general notion accepting that resistance always entails a 
fitness cost.

4. Concluding remarks and future 
directions

As shown throughout this review, the topic of the balance between 
resistance and fitness/virulence in P. aeruginosa in the field of basic 
research applied to the context of acute infection has been significantly 
explored, providing interesting data revealing a great complexity. The 
published information is especially abundant in the case of mutation-
driven mechanisms, and in this specific field but also in that of 
horizontally-acquired resistance, the diversity of data is astonishing, 
even with a considerable number of contradictory results. The 
information gathered here also evidences that there are still many 
knowledge gaps that need filling, for instance regarding most of the 
horizontally acquired β-lactamases and aminoglycoside-modifying 
enzymes, as well as specific mutation-driven mechanisms such as, 
among others, mutations in the PBP3 encoding gene (ftsI) or in 
elongation factor G (fusA1), triggering aztreonam and aminoglycoside 
resistance, respectively. These mechanisms, despite being reported 
relatively often in clinical strains, have been barely studied in terms of 
their associated costs (Jorth et al., 2017; Bolard et al., 2018; McLean 
et al., 2019).

Another field that has been barely approached is the balance 
between resistance and fitness/virulence not from an acute infection 
perspective as we have done, but in the context of chronic infection, 
in which the concept of fitness is much more complex. That is to say, 
selection for slow growth (which enables a better adaptation to 
nutrient scarcity and resistance to certain antibiotics) and reduced 
virulence (triggering a less effective activation of the immune system) 
is a typical outcome of P. aeruginosa in cystic fibrosis infections for 
instance (Høiby et al., 2010; Lorè et al., 2012; Malhotra et al., 2019), 
and therefore, the fitness burden assumed to be negative in the acute 
context, seems that could be somehow advantageous in the chronic 
one. In fact, there are very few investigations specifically assessing the 
antibiotic resistance burden applied to chronic infection (McCaughey 
et al., 2013; Rundell et al., 2020). Hence, research delving into this 
intricate field is warranted to better understand the complex adaptive 
needs that P. aeruginosa have to cope with in such a particular niche.

Returning to the acute context, gaining basic knowledge about 
resistance-fitness/virulence interplay is envisaged as an essential 
weapon to reveal therapeutic targets, especially if we consider that new 
antipseudomonal drugs have been introduced in the last few years 
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(ceftolozane/tazobactam, imipenem/relebactam, ceftazidime/
avibactam, and cefiderocol) and others (aztreonam/avibactam, 
cefepime/zidebactam, and cefepime/taniborbactam) are likely to 
be approved in the near future (Yahav et al., 2020). Therefore, we need 
to determine whether the resistance mechanisms selected against 
these new drugs could inevitably carry high biological costs, and 
consequently entail increased difficulties for mutation-driven 
compensation. Obviously, information regarding the fitness cost for 
these new drugs is still scarce (Gomis-Font et al., 2020; Barceló et al., 
2021) and must be amplified since it may be useful for the development 
of anti-virulence and/or resistance-breaking strategies (Mark et al., 
2011; Guillard et al., 2016; De Oliveira et al., 2020; Rezzoagli et al., 
2020; Langendonk et al., 2021; Liao et al., 2022; Reig et al., 2022). 
Unfortunately, the analysis of the epidemiological picture of the 
resistance phenomenon in P. aeruginosa reveals a warning signal as is 
the clear association between certain mutation-driven/horizontal 
mechanisms and successful high-risk clones, indicating that the 
associated burden of classic antibiotic resistance is not a significant 
barrier to the appearance and dissemination of many mechanisms 
(Oliver et al., 2015; Del Barrio-Tofiño et al., 2020; Kocsis et al., 2021). 
This idea has to be  considered as a real possibility also for the 
mentioned new antipseudomonal agents [e.g., AmpC/FOX variants 
causing ceftolozane-tazobactam resistance with very little burden, see 
above (Barceló et  al., 2022b)], but still, a deeper analysis must 
be  approached with the hope of finding new drugs (including 
combinations with classic ones) for which resistance mechanisms are 
necessarily associated with high fitness/virulence impairments. 
Finally, since it is a topic in which research is not yet especially prolific, 
a more profound analysis of P. aeruginosa compensatory evolution 
associated with the different resistance mechanisms (especially 
regarding the most recent drugs) is needed in order to identify the 
genes responsible for compensation mechanisms and determine 
whether they could be used as alternative therapeutic targets.

Beyond the field of drug development, complete insight into the 
topic in basic research terms could make it easier to decipher the intricate 
picture of resistance-virulence co-evolution in the clinical environment. 
In other words, it could help to understand how antibiotic resistance, 
depending on the specific mechanism(s), may tune the virulence of 
P. aeruginosa, thus enabling a prediction of the evolution of pathogenesis 
and consequences for the patient, which could be very useful in clinical 
practice (Geisinger and Isberg, 2017). For this purpose, other factors that 
should be considered, and that are addressed in other reviews are: type 
of infection, patient background, lineage of the P. aeruginosa strain and 
its arsenal of virulence factors, and the nature of antibiotic treatments 
received (Mulet et al., 2013; Peña et al., 2015; Sánchez-Diener et al., 2017; 
Juan et al., 2017a). If we manage to integrate all these parameters to fully 
understand the resistance-fitness balance in P. aeruginosa, we  will 
hopefully be capable of predicting which treatments could be more likely 
to cause deleterious biological costs associated with resistance 
development, with obvious positive implications for the patients. 
Unfortunately, these goals still seem far off for the time being and in any 
case, in order to attain them it is necessary to fully understand the 
elementary bases that govern resistance-virulence interplay in 
P. aeruginosa, the field addressed in this review.

A final topic that has been barely studied in specific terms is the 
fitness cost potentially associated with the phenomenon of adaptive 
resistance in P. aeruginosa. Given the close relation of this type of 
transient resistance with stress responses, two-component systems and 
quorum sensing signaling (Gooderham and Hancock, 2009; Fernández 

L. et al., 2012; Stewart et al., 2015; Sandoval-Motta and Aldana, 2016; 
Moradali et al., 2017; Ducret et al., 2022), along with the well-known 
influence that most of these elements exert on virulence, a connection 
between adaptive resistance and the temporary modulation of 
pathogenic behavior is highly likely (Strempel et al., 2013). Thus, this is 
a virtually virgin topic that should be  delved into with the goal of 
delineating therapeutic strategies to disable this type of inducible 
resistance and/or take advantage of the potential associated costs.

Altogether, the data reviewed here suggest that we need a holistic 
approach to understand all the edges of the interplay between 
resistance and fitness/virulence in P. aeruginosa, including basic but 
also clinical points of view. Opening/delving into new fields of 
research such as those mentioned in this manuscript is a must in order 
to defeat one of the greatest challenges for public health in the twenty-
first century, as is P. aeruginosa antibiotic resistance.
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