Machine Learning contributions to Hedonic Pricing Method: assessing heterogeneity and causal inference in willingness-to-pay

Show simple item record

dc.contributor Nilsson, Jan Olof William
dc.contributor.author Femenias Rossello, Llorenç Bartomeu
dc.date 2021
dc.date.accessioned 2022-04-08T08:10:46Z
dc.date.available 2022-04-08T08:10:46Z
dc.date.issued 2021-06-17
dc.identifier.uri http://hdl.handle.net/11201/158654
dc.description.abstract [spa] Los modelos de precios hedónicos constituyen uno de los métodos más extendidos a la hora de realizar ejercicios de valoración ambiental. Sin embargo, investigación previa ha identificado algunas limitaciones importantes en su aplicación: falta de flexibilidad en la definición de su forma funcional y falta de robustez en cuanto a su interpretación causal. Este trabajo propone la aplicación de algoritmos de Aprendizaje Automático (Machine Learning) para superar estas limitaciones y así proveer de estimadores más robustos referentes a la disposición marginal a pagar (MWTP por sus siglas en inglés) de los individuos por bienes ambientales de interés. ca
dc.description.abstract [eng] Hedonic pricing models are one of the most widespread methods for conducting environmental valuation exercises. However, previous research has identified some important limitations in its application: lack of flexibility in the definition of its functional form and lack of robustness in terms of its causal interpretation. This work proposes the application of Machine Learning algorithms to overcome these limitations and, thus, to provide more robust estimators regarding the marginal willingness to pay (MWTP) of individuals for environmental goods of interest. ca
dc.format application/pdf
dc.language.iso eng ca
dc.publisher Universitat de les Illes Balears
dc.rights all rights reserved
dc.rights info:eu-repo/semantics/openAccess
dc.subject 004 - Informàtica ca
dc.subject.other Hedonic models ca
dc.subject.other environmental valuation ca
dc.subject.other Machine Learning ca
dc.subject.other MWTP ca
dc.subject.other flexibility ca
dc.subject.other causal inference ca
dc.subject.other heterogeneity ca
dc.subject.other non-linearity ca
dc.title Machine Learning contributions to Hedonic Pricing Method: assessing heterogeneity and causal inference in willingness-to-pay ca
dc.type info:eu-repo/semantics/masterThesis ca
dc.type info:eu-repo/semantics/publishedVersion
dc.date.updated 2022-02-01T07:21:07Z


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics