dc.contributor.author |
Cuoco, Elena
|
|
dc.contributor.author |
Powell, Jade
|
|
dc.contributor.author |
Cavaglià, Marco
|
|
dc.contributor.author |
Ackley, Kendall
|
|
dc.contributor.author |
Bejger, Michal
|
|
dc.contributor.author |
Chatterjee, Chayan
|
|
dc.contributor.author |
Coughlin, Michael
|
|
dc.contributor.author |
Coughlin, Scott
|
|
dc.contributor.author |
Easter, Paul
|
|
dc.contributor.author |
Essick, Reed
|
|
dc.contributor.author |
Gabbard, Hunter
|
|
dc.contributor.author |
Gebhard, Timothy
|
|
dc.contributor.author |
Ghosh, Shaon
|
|
dc.contributor.author |
Haegel, Leila
|
|
dc.contributor.author |
Iess, Alberto
|
|
dc.contributor.author |
Keitel,David
|
|
dc.contributor.author |
Marka, Zsuzsa
|
|
dc.contributor.author |
Marka, Szabolcs
|
|
dc.contributor.author |
Morawski, Filip
|
|
dc.contributor.author |
Nguyen, Tri
|
|
dc.contributor.author |
Ormiston, Rich
|
|
dc.contributor.author |
Puerrer, Michael
|
|
dc.contributor.author |
Razzano, Massimiliano
|
|
dc.contributor.author |
Staats, Kai
|
|
dc.contributor.author |
Vajente, Gabriele
|
|
dc.contributor.author |
Williams, Daniel
|
|
dc.date.accessioned |
2021-02-01T08:13:35Z |
|
dc.date.available |
2021-02-01T08:13:35Z |
|
dc.identifier.uri |
http://hdl.handle.net/11201/154903 |
|
dc.description.abstract |
[eng] Machine learning has emerged as a popular and powerful approach for solving problems in astrophysics. We review applications of machine learning techniques for the analysis of ground-based gravitational-wave detector data. Examples include techniques for improving the sensitivity of Advanced LIGO and Advanced Virgo gravitational-wave searches, methods for fast measurements of the astrophysical parameters of gravitational-wave sources, and algorithms for reduction and characterization of non-astrophysical detector noise. These applications demonstrate how machine learning techniques may be harnessed to enhance the science that is possible with current and future gravitational-wave detectors. |
|
dc.format |
application/pdf |
|
dc.relation.isformatof |
https://arxiv.org/abs/2005.03745 |
|
dc.relation.ispartof |
Machine Learning: Science and Technology, 2020, p. 1-38 |
|
dc.rights |
, 2020 |
|
dc.subject.classification |
52 - Astronomia. Astrofísica. Investigació espacial. Geodèsia |
|
dc.subject.classification |
53 - Física |
|
dc.subject.other |
52 - Astronomy. Astrophysics. Space research. Geodesy |
|
dc.subject.other |
53 - Physics |
|
dc.title |
Enhancing Gravitational-Wave Science with Machine Learning |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.date.updated |
2021-02-01T08:13:35Z |
|
dc.rights.accessRights |
info:eu-repo/semantics/openAccess |
|