dc.contributor.author |
Hossein, M. |
|
dc.contributor.author |
Shiri, J. |
|
dc.contributor.author |
Martí, P. |
|
dc.contributor.author |
Majnooni, A. |
|
dc.date.accessioned |
2024-01-16T09:10:52Z |
|
dc.identifier.uri |
http://hdl.handle.net/11201/163611 |
|
dc.description.abstract |
- |
|
dc.format |
application/pdf |
|
dc.relation.isformatof |
Versió postprint del document publicat a: https://doi.org/10.1016/j.jhydrol.2020.125252 |
|
dc.relation.ispartof |
Journal of Hydrology, 2020, vol. 590, num. 11, p. 125252 |
|
dc.subject.classification |
62 - Enginyeria. Tecnologia |
|
dc.subject.other |
62 - Engineering. Technology in general |
|
dc.title |
Assessing temporal data partitioning scenarios for estimating reference evapotranspiration with machine learning techniques in arid regions. |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:eu-repo/semantics/acceptedVersion |
|
dc.date.updated |
2024-01-16T09:10:53Z |
|
dc.date.embargoEndDate |
info:eu-repo/date/embargoEnd/2100-01-01 |
|
dc.embargo |
2100-01-01 |
|
dc.rights.accessRights |
info:eu-repo/semantics/embargoedAccess |
|
dc.identifier.doi |
https://doi.org/10.1016/j.jhydrol.2020.125252 |
|