Assessing temporal data partitioning scenarios for estimating reference evapotranspiration with machine learning techniques in arid regions.

Show simple item record

dc.contributor.author Hossein, M.
dc.contributor.author Shiri, J.
dc.contributor.author Martí, P.
dc.contributor.author Majnooni, A.
dc.date.accessioned 2024-01-16T09:10:52Z
dc.identifier.uri http://hdl.handle.net/11201/163611
dc.description.abstract -
dc.format application/pdf
dc.relation.isformatof Versió postprint del document publicat a: https://doi.org/10.1016/j.jhydrol.2020.125252
dc.relation.ispartof Journal of Hydrology, 2020, vol. 590, num. 11, p. 125252
dc.subject.classification 62 - Enginyeria. Tecnologia
dc.subject.other 62 - Engineering. Technology in general
dc.title Assessing temporal data partitioning scenarios for estimating reference evapotranspiration with machine learning techniques in arid regions.
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/acceptedVersion
dc.date.updated 2024-01-16T09:10:53Z
dc.date.embargoEndDate info:eu-repo/date/embargoEnd/2100-01-01
dc.embargo 2100-01-01
dc.rights.accessRights info:eu-repo/semantics/embargoedAccess
dc.identifier.doi https://doi.org/10.1016/j.jhydrol.2020.125252


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics