Testing big data in a big crisis: Nowcasting under Covid-19

Show simple item record

dc.contributor.author Luca Barbaglia
dc.contributor.author Lorenzo Frattarolo
dc.contributor.author Luca Onorante
dc.contributor.author Filippo Maria Pericoli
dc.contributor.author Marco Ratto
dc.contributor.author Luca Tiozzo Pezzoli
dc.date.accessioned 2025-01-30T16:43:45Z
dc.date.available 2025-01-30T16:43:45Z
dc.identifier.citation Barbaglia, L., Frattarolo, L., Onorante, L., Pericoli, F. M., Ratto, M., i Pezzoli, L. T. (2023). Testing big data in a big crisis: Nowcasting under COVID-19. International Journal of Forecasting, 39(4), 1548-1563. https://doi.org/10.1016/j.ijforecast.2022.10.005 ca
dc.identifier.uri http://hdl.handle.net/11201/168370
dc.description.abstract [eng] During the Covid-19 pandemic, economists have struggled to obtain reliable economic predictions, with standard models becoming outdated and their forecasting performance deteriorating rapidly. This paper presents two novelties that could be adopted by forecasting institutions in unconventional times. The first innovation is the construction of an extensive data set for </span><a href="https://www.sciencedirect.com/topics/economics-econometrics-and-finance/macroeconomics" target="_blank" style="color:rgb( 31 , 31 , 31 )" rel="nofollow noopener noreferrer">macroeconomic</a><span style="color:rgb( 31 , 31 , 31 )"> forecasting in Europe. We collect more than a thousand </span><a href="https://www.sciencedirect.com/topics/economics-econometrics-and-finance/time-series" target="_blank" style="color:rgb( 31 , 31 , 31 )" rel="nofollow noopener noreferrer">time series</a><span style="color:rgb( 31 , 31 , 31 )"> from conventional and unconventional sources, complementing traditional </span><a href="https://www.sciencedirect.com/topics/economics-econometrics-and-finance/macroeconomic-variable" target="_blank" style="color:rgb( 31 , 31 , 31 )" rel="nofollow noopener noreferrer">macroeconomic variables</a><span style="color:rgb( 31 , 31 , 31 )"> with timely big data indicators and assessing their </span><a href="https://www.sciencedirect.com/topics/social-sciences/value-added" target="_blank" style="color:rgb( 31 , 31 , 31 )" rel="nofollow noopener noreferrer">added value</a><span style="color:rgb( 31 , 31 , 31 )"> at nowcasting. The second novelty consists of a methodology to merge an enormous amount of non-encompassing data with a large battery of classical and more sophisticated forecasting methods in a seamlessly dynamic </span><a href="https://www.sciencedirect.com/topics/economics-econometrics-and-finance/bayesian" target="_blank" style="color:rgb( 31 , 31 , 31 )" rel="nofollow noopener noreferrer">Bayesian</a><span style="color:rgb( 31 , 31 , 31 )"> framework. Specifically, we introduce an innovative “selection prior” that is used not as a way to influence model outcomes, but as a selection device among competing models. By applying this methodology to the Covid-19 crisis, we show which variables are good predictors for nowcasting gross domestic product and draw lessons for dealing with possible future crises. en
dc.format application/pdf
dc.format.extent 1548-1563
dc.publisher Elsevier
dc.relation.ispartof International Journal of Forecasting, 2023, vol. 39, num.4, p. 1548-1563
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject.classification 33 - Economia
dc.subject.classification 004 - Informàtica
dc.subject.other 33 - Economics. Economic science
dc.subject.other 004 - Computer Science and Technology. Computing. Data processing
dc.title Testing big data in a big crisis: Nowcasting under Covid-19 en
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/acceptedVersion
dc.type Article
dc.date.updated 2025-01-30T16:43:45Z
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1016/j.ijforecast.2022.10.005


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search Repository


Advanced Search

Browse

My Account

Statistics