dc.contributor.author |
Ortiz, A. |
|
dc.contributor.author |
Valero, O. |
|
dc.contributor.author |
Miñana, J.J. |
|
dc.date.accessioned |
2025-10-03T08:35:48Z |
|
dc.date.available |
2025-10-03T08:35:48Z |
|
dc.date.issued |
2025-10-03 |
|
dc.identifier.citation |
Ortiz, A., Valero, Ó. i Miñana, J.J. (2024). On the Use of Modular Indistinguishability Operators in RBFNN-Like Models. En M.J. Lesot, et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2024 (pp. 345-359). Springer. https://doi.org/10.1007/978-3-031-74003-9_28 |
ca |
dc.identifier.isbn |
978-3-031-74002-2 |
|
dc.identifier.uri |
http://hdl.handle.net/11201/171514 |
|
dc.description.abstract |
[eng] Radial Basis Function Neural Networks (RBFNN) have become popular machine learning models with a simple structure but at the same time strong non-linear function approximation and effective modeling capabilities. In this work, we explore the use of Modular Indistinguishability Operators (MIO) in RBFNN-like structures to replace the RBFs that populate the hidden layer, to give rise to MIO-based Neural Networks (MIO-NN). In this respect, we introduce a new distance function and prove that it is a modular metric, to next use it to derive two MIOs to be evaluated as the key component of MIO-NNs. As an additional contribution, we describe Self-Defining MIO-NN (SD-MIO-NN) as an approach capable of configuring MIO-NNs in a parameterless way. SD-MIO-NN comprises a first step that defines the size of the hidden layer, a second step that determines the parameters of the hidden neurons and a last step that calculates the weights of the hidden-to-output layer connections. The experimental results show the effectiveness of the proposed MIOs for multi-class classification, and by extension of SDMIO-NN, which in turn compares well with other similar solutions. |
en |
dc.format |
application/pdf |
en |
dc.format.extent |
345-359 |
|
dc.language.iso |
eng |
|
dc.publisher |
Springer |
de |
dc.relation |
info:eu-repo/grantAgreement/EU/Horizon 2020 research and innovation programme/BUGWRIGHT2 (GA 871260)/[UE] |
|
dc.relation |
info:eu-repo/grantAgreement/AEI/10.13039/501100011033/PID2022-139248NB-I00/[ES] |
|
dc.relation |
info:eu-repo/grantAgreement/ERDF A way of making Europe//PID2022-139248NB-I00/[EU] |
|
dc.relation.ispartof |
Proceedings of 20th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based System (IPMU 2024), 2024, p. 345-359 |
en |
dc.relation.ispartofseries |
Lecture Notes in Networks and Systems; 1174 |
en |
dc.rights |
all rights reserved |
|
dc.subject |
004 - Informàtica |
ca |
dc.subject.other |
Multi-class Classification |
en |
dc.subject.other |
RBF Neural Networks (RBFNN) |
en |
dc.subject.other |
Modular Indistinguishability Operators (MIO) |
en |
dc.title |
On the Use of Modular Indistinguishability Operators in RBFNN-like Models |
en |
dc.type |
Book chapter |
|
dc.type |
info:eu-repo/semantics/bookpart |
|
dc.date.embargoEndDate |
info:eu-repo/date/embargoEnd/2026-02-01 |
|
dc.rights.accessRights |
info:eu-repo/semantics/embargoedAccess |
|
dc.identifier.doi |
https://doi.org/10.1007/978-3-031-74003-9_28 |
|