On the Use of Modular Indistinguishability Operators in RBFNN-like Models

Show simple item record

dc.contributor.author Ortiz, A.
dc.contributor.author Valero, O.
dc.contributor.author Miñana, J.J.
dc.date.accessioned 2025-10-03T08:35:48Z
dc.date.available 2025-10-03T08:35:48Z
dc.date.issued 2025-10-03
dc.identifier.citation Ortiz, A., Valero, Ó. i Miñana, J.J. (2024). On the Use of Modular Indistinguishability Operators in RBFNN-Like Models. En M.J. Lesot, et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2024 (pp. 345-359). Springer. https://doi.org/10.1007/978-3-031-74003-9_28 ca
dc.identifier.isbn 978-3-031-74002-2
dc.identifier.uri http://hdl.handle.net/11201/171514
dc.description.abstract [eng] Radial Basis Function Neural Networks (RBFNN) have become popular machine learning models with a simple structure but at the same time strong non-linear function approximation and effective modeling capabilities. In this work, we explore the use of Modular Indistinguishability Operators (MIO) in RBFNN-like structures to replace the RBFs that populate the hidden layer, to give rise to MIO-based Neural Networks (MIO-NN). In this respect, we introduce a new distance function and prove that it is a modular metric, to next use it to derive two MIOs to be evaluated as the key component of MIO-NNs. As an additional contribution, we describe Self-Defining MIO-NN (SD-MIO-NN) as an approach capable of configuring MIO-NNs in a parameterless way. SD-MIO-NN comprises a first step that defines the size of the hidden layer, a second step that determines the parameters of the hidden neurons and a last step that calculates the weights of the hidden-to-output layer connections. The experimental results show the effectiveness of the proposed MIOs for multi-class classification, and by extension of SDMIO-NN, which in turn compares well with other similar solutions. en
dc.format application/pdf en
dc.format.extent 345-359
dc.language.iso eng
dc.publisher Springer de
dc.relation info:eu-repo/grantAgreement/EU/Horizon 2020 research and innovation programme/BUGWRIGHT2 (GA 871260)/[UE]
dc.relation info:eu-repo/grantAgreement/AEI/10.13039/501100011033/PID2022-139248NB-I00/[ES]
dc.relation info:eu-repo/grantAgreement/ERDF A way of making Europe//PID2022-139248NB-I00/[EU]
dc.relation.ispartof Proceedings of 20th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based System (IPMU 2024), 2024, p. 345-359 en
dc.relation.ispartofseries Lecture Notes in Networks and Systems; 1174 en
dc.rights all rights reserved
dc.subject 004 - Informàtica ca
dc.subject.other Multi-class Classification en
dc.subject.other RBF Neural Networks (RBFNN) en
dc.subject.other Modular Indistinguishability Operators (MIO) en
dc.title On the Use of Modular Indistinguishability Operators in RBFNN-like Models en
dc.type Book chapter
dc.type info:eu-repo/semantics/bookpart
dc.date.embargoEndDate info:eu-repo/date/embargoEnd/2026-02-01
dc.rights.accessRights info:eu-repo/semantics/embargoedAccess
dc.identifier.doi https://doi.org/10.1007/978-3-031-74003-9_28


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics