Towards Multi Session Visual SLAM in Underwater Environments Colonized with Posidonia Oceanica

Show simple item record

dc.contributor.author Burguera Burguera, Antoni
dc.contributor.author Bonin-Font, Francisco
dc.date.accessioned 2025-10-06T09:24:43Z
dc.date.available 2025-10-06T09:24:43Z
dc.date.issued 2025-10-06
dc.identifier.citation Burguera Burguera, A. i Bonin-Font, F. (2018). Towards Multi Session Visual SLAM in Underwater Environments Colonized with Posidonia Oceanica. En 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV). IEEE. https://doi.org/10.1109/AUV.2018.8729730 ca
dc.identifier.uri http://hdl.handle.net/11201/171532
dc.description.abstract [eng] This paper describes a multi-session monocular SLAM approach addressed to underwater environments. It has three main blocks: a) visual odometry, b) loop-closing detection; loop closings inside each individual session are found applying feature matching with RANSAC, and since no geometric relation between images of different sessions is available, multi-session loop closings are detected via an image hash matching procedure, alleviating also the computational cost of the image comparisons, and c) an Iterated Extended Kalman Filter (IEKF) based optimization process used to refine the different individual trajectories and to join the different maps; the global optimization process (map joining) can be delayed until certain number of loop closings are found, reducing the global running time. Several experiments using marine imagery in areas colonized with Posidonia Oceanica show the robustness of this approach. en
dc.format application/pdf en
dc.language.iso eng
dc.publisher IEEE en
dc.relation info:eu-repo/grantAgreement/AEI//TIN2014-58662-R/[ES]
dc.relation info:eu-repo/grantAgreement/FEDER/UE//TIN2014-58662-R/[ES]
dc.relation info:eu-repo/grantAgreement/AEI//DPI2014-57746-C3-2-R/[ES]
dc.relation info:eu-repo/grantAgreement/FEDER/UE//DPI2014-57746-C3-2-R/[ES]
dc.relation info:eu-repo/grantAgreement/AEI//DPI2017-86372-C3-3-R/[ES]
dc.relation info:eu-repo/grantAgreement/FEDER/UE//DPI2017-86372-C3-3-R/[ES]
dc.relation.ispartof IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), 2018 en
dc.rights all rights reserved
dc.subject 004 - Informàtica ca
dc.title Towards Multi Session Visual SLAM in Underwater Environments Colonized with Posidonia Oceanica en
dc.type Book chapter
dc.type info:eu-repo/semantics/bookpart
dc.type info:eu-repo/semantics/conferenceObject
dc.type conferenceObject
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1109/AUV.2018.8729730


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics