Machine Learning and Deep Learning Strategies to Identify Posidonia Meadows in Underwater Images

Show simple item record

dc.contributor.author González-Cid, Yolanda
dc.contributor.author Burguera, Antoni
dc.contributor.author Bonin-Font, Francisco
dc.contributor.author Matamoros, Alejandro
dc.date.accessioned 2025-10-06T10:10:44Z
dc.date.available 2025-10-06T10:10:44Z
dc.date.issued 2025-10-06
dc.identifier.citation González-Cid, Y., Burguera, A., Bonin-Font, F. i Matamoros, A. (2017). Machine Learning and Deep Learning Strategies to Identify Posidonia Meadows in Underwater Images. OCEANS 2017 - Aberdeen. IEEE. https://doi.org/10.1109/OCEANSE.2017.8084991 ca
dc.identifier.uri http://hdl.handle.net/11201/171537
dc.description.abstract [eng] This paper describes how to automatically identify Posidonea Oceanica (P.O.) from seabed images gathered by a bottom-looking camera. Different methods based on machine learning and deep learning algorithms are presented and compared. On the one hand, texture descriptors and co-occurrence matrices are used to characterize the images and classify the P.O. regions by means of Support Vector Machine and Artificial Neural Networks. On the other hand, Convolutional Neural Networks are used in the Deep Learning approach. The experimental results obtained demonstrate the effectiveness of the algorithms proposed to automatically identify P.O. meadows in underwater images. en
dc.format application/pdf en
dc.language.iso eng
dc.publisher IEEE en
dc.relation info:eu-repo/grantAgreement/AEI//TIN2014-58662-R/[ES]
dc.relation info:eu-repo/grantAgreement/FEDER//TIN2014-58662-R/[ES]
dc.relation info:eu-repo/grantAgreement/AEI//DPI2014-57746-C3-2-R/[ES]
dc.relation info:eu-repo/grantAgreement/FEDER//DPI2014-57746-C3-2-R/[ES]
dc.relation.ispartof OCEANS 2017 - Aberdeen en
dc.rights all rights reserved
dc.subject 004 - Informàtica ca
dc.subject 57 - Biologia ca
dc.subject 62 - Enginyeria. Tecnologia ca
dc.title Machine Learning and Deep Learning Strategies to Identify Posidonia Meadows in Underwater Images en
dc.type Book chapter
dc.type info:eu-repo/semantics/bookpart
dc.type info:eu-repo/semantics/conferenceObject
dc.type conferenceObject
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1109/OCEANSE.2017.8084991


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics