Towards Automatic Visual Sea Grass Detection in Underwater Areas of Ecological Interest

Show simple item record

dc.contributor.author Burguera, Antoni
dc.contributor.author Bonin-Font, Francisco
dc.contributor.author Lisani, José Luis
dc.contributor.author Petro, Ana Belén
dc.contributor.author Oliver, Gabriel
dc.date.accessioned 2025-10-06T10:57:09Z
dc.date.available 2025-10-06T10:57:09Z
dc.date.issued 2025-10-06
dc.identifier.citation Burguera, A., Bonin-Font, F., Lisani, J. L., Petro, A. B. i Oliver, G. (2016). Towards Automatic Visual Sea Grass Detection in Underwater Areas of Ecological Interest. En IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE. https://doi.org/10.1109/ETFA.2016.7733594 ca
dc.identifier.uri http://hdl.handle.net/11201/171543
dc.description.abstract [eng] In areas of ecological interest, the detection and control of seaweed such as Posidonia Oceanica is usually performed by divers. Due to the limited capacity of the scuba tanks and the human security protocols, this task involves several short immersions leading to poor temporal and spatial data resolution. Thus, it is desirable to automate this task by means of underwater robots. This paper describes a method to autonomously detect Posidonia Oceanica in the imagery gathered by an underwater robot. The proposed approach uses a set of Gabor filters to characterize an image. This characterization is used to detect the regions containing seaweed by means of a Support Vector Machine. The experiments, conducted with an Autonomous Underwater Robot in several marine areas of Mallorca, show promising results towards the automated seafloor classification from extended video sequences. en
dc.format application/pdf en
dc.language.iso eng
dc.publisher IEEE en
dc.relation info:eu-repo/grantAgreement/AEI//TIN2014-58662-R/[ES]
dc.relation info:eu-repo/grantAgreement/FEDER//TIN2014-58662-R/[ES]
dc.relation info:eu-repo/grantAgreement/AEI//DPI2014-57746-C3-2-R/[ES]
dc.relation info:eu-repo/grantAgreement/FEDER//DPI2014-57746-C3-2-R/[ES]
dc.relation.ispartof IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), 2016 en
dc.rights all rights reserved
dc.subject 004 - Informàtica ca
dc.subject 57 - Biologia ca
dc.subject 574 - Ecologia general i biodiversitat ca
dc.subject 62 - Enginyeria. Tecnologia ca
dc.title Towards Automatic Visual Sea Grass Detection in Underwater Areas of Ecological Interest en
dc.type Book chapter
dc.type info:eu-repo/semantics/bookpart
dc.type info:eu-repo/semantics/conferenceObject
dc.type conferenceObject
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1109/ETFA.2016.7733594


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics