Canard trajectories in 3D piecewise linear systems

Show simple item record

dc.contributor.author Prohens, R.
dc.contributor.author Teruel, A.E.
dc.date.accessioned 2020-02-12T08:57:42Z
dc.date.available 2020-02-12T08:57:42Z
dc.identifier.uri http://hdl.handle.net/11201/150865
dc.description.abstract [eng] We present some results on singularly perturbed piecewise linear systems, similar to those obtained by the Geometric Singular Perturbation Theory. Unlike the differentiable case, in the piecewise linear case we obtain the global expression of the slow manifold Sε. As a result, we characterize the existence of canard orbits in such systems. Finally, we apply the above theory to a specific case where we show numerical evidences of the existence of a canard cycle.
dc.format application/pdf
dc.relation.isformatof Reproducció del document publicat a: https://doi.org/10.3934/dcds.2013.33.4595
dc.relation.ispartof Discrete and Continuous Dynamical Systems, 2013, vol. 33, num. 10, p. 4595-4611
dc.subject.classification 51 - Matemàtiques
dc.subject.classification 004 - Informàtica
dc.subject.other 51 - Mathematics
dc.subject.other 004 - Computer Science and Technology. Computing. Data processing
dc.title Canard trajectories in 3D piecewise linear systems
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion
dc.date.updated 2020-02-12T08:57:42Z
dc.subject.keywords Singular perturbation
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.3934/dcds.2013.33.4595


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics