dc.contributor.author |
Murza, Adrian C.
|
|
dc.contributor.author |
Teruel, Antonio E.
|
|
dc.contributor.author |
Zarnescu, Arghir D.
|
|
dc.date.accessioned |
2020-04-03T06:24:26Z |
|
dc.identifier.uri |
http://hdl.handle.net/11201/151923 |
|
dc.description.abstract |
[eng] We consider the Beris-Edwards model describing nematic liquid crystal dynamics and restrict it to a shear flow and spatially homogeneous situation. We analyse the dynamics focusing on the effect of the flow. We show that in the co-rotational case one has gradient dynamics, up to a periodic eigenframe rotation, while in the non-co rotational case we identify the short- and long-time regimes of the dynamics. We express these in terms of the physical variables and compare with the predictions of other models of liquid crystal dynamics. |
|
dc.format |
application/pdf |
|
dc.relation.isformatof |
https://doi.org/10.1098/rspa.2017.0673 |
|
dc.relation.ispartof |
Proceedings Of The Royal Society a-Mathematical Physical And Engineering Sciences, 2018, vol. 474, num. 2210, p. 1-20 |
|
dc.rights |
, 2018 |
|
dc.subject.classification |
004 - Informàtica |
|
dc.subject.classification |
51 - Matemàtiques |
|
dc.subject.other |
004 - Computer Science and Technology. Computing. Data processing |
|
dc.subject.other |
51 - Mathematics |
|
dc.title |
Shear flow dynamics in the Beris-Edwards model of nematic liquid crystals |
|
dc.type |
info:eu-repo/semantics/article |
|
dc.date.updated |
2020-04-03T06:24:26Z |
|
dc.date.embargoEndDate |
info:eu-repo/date/embargoEnd/2026-12-31 |
|
dc.embargo |
2026-12-31 |
|
dc.subject.keywords |
Cristales líquidos |
|
dc.subject.keywords |
Dinámica de fluidos |
|
dc.rights.accessRights |
info:eu-repo/semantics/embargoedAccess |
|
dc.identifier.doi |
https://doi.org/10.1098/rspa.2017.0673 |
|