Twists of the genus 2 curve $Y^2 = X^6 + 1$

Show simple item record

dc.contributor.author Cardona, Gabriel
dc.contributor.author Lario, Joan-Carles
dc.date.accessioned 2023-12-22T09:45:42Z
dc.identifier.uri http://hdl.handle.net/11201/163353
dc.description.abstract [eng] Here we study the twists of the genus 2 curve given by the hyperelliptic equation over any field of characteristic different from 2, 3 or 5. Since any curve of genus 2 with group of automorphisms of order 24 is isomorphic (over an algebraically closed field) to the given one, the study of this set of twists is equivalent to the classification, up to isomorphisms defined over the base field, of curves of genus 2 with that number of automorphisms. This contribution closes the series of articles on the classification of twists of curves of genus 2. The knowledge of these twists can be of interest in a wide range of arithmetical questions, such as the Sato-Tate or the Strong Lang conjectures among others.
dc.format application/pdf
dc.relation.isformatof Versió postprint del document publicat a: https://doi.org/10.1016/j.jnt.2019.08.017
dc.relation.ispartof Journal of Number Theory, 2020, vol. 209, p. 195-211
dc.subject.classification 51 - Matemàtiques
dc.subject.classification 004 - Informàtica
dc.subject.other 51 - Mathematics
dc.subject.other 004 - Computer Science and Technology. Computing. Data processing
dc.title Twists of the genus 2 curve $Y^2 = X^6 + 1$
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/acceptedVersion
dc.date.updated 2023-12-22T09:45:42Z
dc.date.embargoEndDate info:eu-repo/date/embargoEnd/2100-01-01
dc.embargo 2100-01-01
dc.rights.accessRights info:eu-repo/semantics/embargoedAccess
dc.identifier.doi https://doi.org/10.1016/j.jnt.2019.08.017


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account

Statistics