Assessing benthic marine habitats colonised with posidonia oceanica using autonomous marine robots and deep learning: A eurofleets campaign

Show simple item record

dc.contributor.author Miquel Massot-Campos
dc.contributor.author Francisco Bonin-Font
dc.contributor.author Eric Guerrero Font
dc.contributor.author Antoni Martorell Torres
dc.contributor.author Miguel Martín Abadal
dc.contributor.author Caterina Muntaner González
dc.contributor.author Bo Miquel Nordfeldt-Fiol
dc.contributor.author Gabriel Oliver Codina
dc.contributor.author Jose Cappeletto
dc.contributor.author Blair Thornton
dc.date.accessioned 2025-07-09T10:02:37Z
dc.date.available 2025-07-09T10:02:37Z
dc.identifier.citation Massot-Campos, M., Bonin-Font, F., Guerrero Font, E., Martorell Torres, A., Martín Abadal, M., Muntaner González, C., Nordfeldt-Fiol, B. M., Cappeletto, J., i Thornton, B. (2023). Assessing benthic marine habitats colonised with posidonia oceanica using autonomous marine robots and deep learning: A eurofleets campaign. Estuarine Coastal and Shelf Science, 291. https://doi.org/10.1016/j.ecss.2023.108438 ca
dc.identifier.uri http://hdl.handle.net/11201/170675
dc.description.abstract [eng] This paper presents a methodology for observing and analyzing marine ecosystems using images gathered from autonomous marine vehicles. Visual data is composed in photo-mosaics and classified using machine learning algorithms. The approach expands existing solutions, enabling extended monitoring in time, space, and depth. Imagery was collected during a field campaign in the Spanish marine and terrestrial protected area of Cabrera, Balearic Islands, colonized by the endemic seagrass species Posidonia oceanica (Po). The operations were performed using three distinct platforms, an Autonomous Underwater Vehicle (AUV), an Autonomous Surface Vehicle (ASV) and a Lagrangian Drifter (LD). Results are compared to prior habitat maps to assess seagrass meadow distribution. The proposed solution can be scaled and adapted to other locations and species, considering limitations in data storage and battery endurance. en
dc.format application/pdf en
dc.publisher Elsevier
dc.relation.ispartof Estuarine Coastal and Shelf Science, 2023, vol. 291
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject.classification 004 - Informàtica ca
dc.subject.classification 62 - Enginyeria. Tecnologia ca
dc.subject.classification 57 - Biologia ca
dc.subject.other 004 - Computer Science and Technology. Computing. Data processing en
dc.subject.other 62 - Engineering. Technology in general en
dc.subject.other 57 - Biological sciences in general en
dc.title Assessing benthic marine habitats colonised with posidonia oceanica using autonomous marine robots and deep learning: A eurofleets campaign en
dc.type info:eu-repo/semantics/article
dc.type info:eu-repo/semantics/publishedVersion
dc.type Article
dc.date.updated 2025-07-09T10:02:37Z
dc.subject.keywords Convolutional Neural Network (CNN) en
dc.subject.keywords Seagrass en
dc.subject.keywords AUV (Autonomous Underwater Vehicles) en
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.identifier.doi https://doi.org/10.1016/j.ecss.2023.108438


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search Repository


Advanced Search

Browse

My Account

Statistics