dc.contributor.author |
Miquel Massot-Campos |
|
dc.contributor.author |
Francisco Bonin-Font |
|
dc.contributor.author |
Eric Guerrero Font |
|
dc.contributor.author |
Antoni Martorell Torres |
|
dc.contributor.author |
Miguel Martín Abadal |
|
dc.contributor.author |
Caterina Muntaner González |
|
dc.contributor.author |
Bo Miquel Nordfeldt-Fiol |
|
dc.contributor.author |
Gabriel Oliver Codina |
|
dc.contributor.author |
Jose Cappeletto |
|
dc.contributor.author |
Blair Thornton |
|
dc.date.accessioned |
2025-07-09T10:02:37Z |
|
dc.date.available |
2025-07-09T10:02:37Z |
|
dc.identifier.citation |
Massot-Campos, M., Bonin-Font, F., Guerrero Font, E., Martorell Torres, A., Martín Abadal, M., Muntaner González, C., Nordfeldt-Fiol, B. M., Cappeletto, J., i Thornton, B. (2023). Assessing benthic marine habitats colonised with posidonia oceanica using autonomous marine robots and deep learning: A eurofleets campaign. Estuarine Coastal and Shelf Science, 291. https://doi.org/10.1016/j.ecss.2023.108438 |
ca |
dc.identifier.uri |
http://hdl.handle.net/11201/170675 |
|
dc.description.abstract |
[eng] This paper presents a methodology for observing and analyzing marine ecosystems using images gathered from autonomous marine vehicles. Visual data is composed in photo-mosaics and classified using machine learning algorithms. The approach expands existing solutions, enabling extended monitoring in time, space, and depth. Imagery was collected during a field campaign in the Spanish marine and terrestrial protected area of Cabrera, Balearic Islands, colonized by the endemic seagrass species Posidonia oceanica (Po). The operations were performed using three distinct platforms, an Autonomous Underwater Vehicle (AUV), an Autonomous Surface Vehicle (ASV) and a Lagrangian Drifter (LD). Results are compared to prior habitat maps to assess seagrass meadow distribution. The proposed solution can be scaled and adapted to other locations and species, considering limitations in data storage and battery endurance. |
en |
dc.format |
application/pdf |
en |
dc.publisher |
Elsevier |
|
dc.relation.ispartof |
Estuarine Coastal and Shelf Science, 2023, vol. 291 |
|
dc.rights |
Attribution 4.0 International |
|
dc.rights.uri |
https://creativecommons.org/licenses/by/4.0/ |
|
dc.subject.classification |
004 - Informàtica |
ca |
dc.subject.classification |
62 - Enginyeria. Tecnologia |
ca |
dc.subject.classification |
57 - Biologia |
ca |
dc.subject.other |
004 - Computer Science and Technology. Computing. Data processing |
en |
dc.subject.other |
62 - Engineering. Technology in general |
en |
dc.subject.other |
57 - Biological sciences in general |
en |
dc.title |
Assessing benthic marine habitats colonised with posidonia oceanica using autonomous marine robots and deep learning: A eurofleets campaign |
en |
dc.type |
info:eu-repo/semantics/article |
|
dc.type |
info:eu-repo/semantics/publishedVersion |
|
dc.type |
Article |
|
dc.date.updated |
2025-07-09T10:02:37Z |
|
dc.subject.keywords |
Convolutional Neural Network (CNN) |
en |
dc.subject.keywords |
Seagrass |
en |
dc.subject.keywords |
AUV (Autonomous Underwater Vehicles) |
en |
dc.rights.accessRights |
info:eu-repo/semantics/openAccess |
|
dc.identifier.doi |
https://doi.org/10.1016/j.ecss.2023.108438 |
|